14、如圖,四邊形ABCD中,AB∥CD,要使四邊形ABCD為平行四邊形,則應添加的條件是
AB=CD或AD∥BC或∠A=∠C等(不唯一)
.(添加一個條件即可,不添加其它的點和線).
分析:本題是開放題,可以針對平行四邊形的各種判定方法,給出條件.答案可以有多種,主要條件明確,說法有理即可.
解答:解:可添加的條件有:AB=CD或AD∥BC或∠A=∠C等,答案不唯一;
以∠A=∠C為例進行說明;
證明:∵AB∥CD,
∴∠B+∠C=180°;
∵∠A=∠C,
∴∠A+∠B=180°;
∴AD∥BC;
∵AD∥BC,AB∥CD,
∴四邊形ABCD是平行四邊形.(兩組對邊分別平行的四邊形是平行四邊形)
故答案為:AB=CD或AD∥BC或∠A=∠C等(不唯一)
點評:本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解答此類題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案