(2005•大連)如圖,AB是⊙O的直徑,AC是⊙O的切線,且AB=AC,則∠C的度數(shù)是    度.
【答案】分析:AB是⊙O的直徑,AC是⊙O的切線,則AB⊥AC,易證明△ABC是等腰直角三角形,所以∠C的度數(shù)是45°.
解答:解:∵AB是⊙O的直徑,AC是⊙O的切線,
則AB⊥AC;
又∵AB=AC,
∴△ABC是等腰直角三角形,
∴∠C=45°.
點(diǎn)評(píng):切線垂直于過切點(diǎn)的半徑,正確記憶切線的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•大連)如圖,拋物線y=-x2+(m+2)x-3(m-1)交x軸于點(diǎn)A、B(A在B的右邊),直線y=(m+1)x-3經(jīng)過點(diǎn)A.若m<1.
(1)求拋物線和直線的解析式;
(2)直線y=kx(k<0)交直線y=(m+1)x-3于點(diǎn)P,交拋物線y=-x2+(m+2)x-3(m-1)于點(diǎn)M,過M點(diǎn)作x軸垂線,垂足為D,交直線y=(m+1)x-3于點(diǎn)N.問:△PMN能否為等腰三角形?若能,求k的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•大連)如圖,P是y軸上一動(dòng)點(diǎn),是否存在平行于y軸的直線x=t,使它與直線y=x和直線y=-x+2分別交于點(diǎn)D、E(E在D的上方),且△PDE為等腰直角三角形?若存在,求t的值及點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年遼寧省大連市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•大連)如圖,P是y軸上一動(dòng)點(diǎn),是否存在平行于y軸的直線x=t,使它與直線y=x和直線y=-x+2分別交于點(diǎn)D、E(E在D的上方),且△PDE為等腰直角三角形?若存在,求t的值及點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年遼寧省大連市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•大連)如圖,拋物線y=-x2+(m+2)x-3(m-1)交x軸于點(diǎn)A、B(A在B的右邊),直線y=(m+1)x-3經(jīng)過點(diǎn)A.若m<1.
(1)求拋物線和直線的解析式;
(2)直線y=kx(k<0)交直線y=(m+1)x-3于點(diǎn)P,交拋物線y=-x2+(m+2)x-3(m-1)于點(diǎn)M,過M點(diǎn)作x軸垂線,垂足為D,交直線y=(m+1)x-3于點(diǎn)N.問:△PMN能否為等腰三角形?若能,求k的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案