【題目】已知:在△ABC中,∠ABC=60°,CD平分∠ACB交AB于點D,點E在線段CD上(點E不與點C. D重合),且∠EAC=2∠EBC.
(1)如圖1,若∠EBC=27°,且EB=EC,則∠DEB=___°,∠AEC=___°.
(2)如圖2,①求證:AE+AC=BC;
②若∠ECB=30°,且AC=BE,求∠EBC的度數(shù)。
【答案】(1)27°,99°;(2)①見解析;②20°;
【解析】
(1)由等腰三角形的性質(zhì)得到∠EBC=∠ECB=27°,根據(jù)角平分線的性質(zhì)得到∠DEB=∠EBC+∠ECB=54°,再由角平分線的性質(zhì)得到∠ACD=∠ECB=27°,因為∠EAC=2∠EBC=54°,求得∠AEC=180°-27°-54°=99°;
(2)①在BC上取一點M,使BM=ME,根據(jù)等腰三角形的性質(zhì)得到∠MBE=∠MEB,由∠EAB=2∠MBE,∠EMC=∠MBE+∠MEB=2∠MBE,得到∠EAC=∠EMC,由全等三角形的性質(zhì)推出AE=ME,CM=AC,于是得到結論;
②如圖2,在BC上取一點M,使BM=ME,連接AM,由∠ECB=30°,得到∠ACB=60°,于是推出△AMC是等邊三角形,通過三角形全等得到∠EBC=∠MAE,由∠MAC=60°,得到∠EAC=2∠EBC=2∠MAE,于是得出結果.
(1)∵EB=EC,
∴∠EBC=∠ECB=27°,
∵CD平分∠ACB,
∴∠ACD=∠ECB=27°,
∵∠EAC=2∠EBC=54°,
∴∠AEC=180°27°54°=99°,
故答案為:27°,99°;
(2)①證明:如圖1,在BC上取一點M,使BM=ME,
∴∠MBE=∠MEB,
∵∠EAC=2∠MBE,∠EMC=∠MBE+∠MEB=2∠MBE,
∴∠EAC=∠EMC,
在△ACE與△MCE中,
,
∴△ACE≌△MCE,
∴AE=ME,CM=AC,
∴AE=BM,
∴BC=BM+CM=AE+AC;
②如圖2在BC上取一點M,使BM=ME,連接AM,
∵∠ECB=30°,
∴∠ACB=60°,由①可知;△AMC是等邊三角形(M點與B點重合),
∴AM=AC=BE,
在△EMB與△MEA中,
,
∴∠EBC=∠MAE,
∵∠MAC=60°,
∵∠EAC=2∠EBC=2∠MAE,
∴∠MAE=20°,∠EAC=40°,
∴∠EBC=20°.
科目:初中數(shù)學 來源: 題型:
【題目】我市從 2018 年 1 月 1 日開始,禁止燃油助力車上路,于是電動自 行車的市場需求量日漸增多.某商店計劃最多投入 8 萬元購進 A、B 兩種型號的 電動自行車共 30 輛,其中每輛 B 型電動自行車比每輛 A 型電動自行車多 500 元.用 5 萬元購進的 A 型電動自行車與用 6 萬元購進的 B 型電動自行車數(shù)量一 樣.
(1)求 A、B 兩種型號電動自行車的進貨單價;
(2)若 A 型電動自行車每輛售價為 2800 元,B 型電動自行車每輛售價為 3500 元,設該商店計劃購進 A 型電動自行車 m 輛,兩種型號的電動自行車全部銷售 后可獲利潤 y 元.寫出 y 與 m 之間的函數(shù)關系式;
(3)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知中,,,點、分別是軸和軸上的一動點.
(1)如圖,若點的橫坐標為,求點的坐標;
(2)如圖,交軸于,平分,若點的縱坐標為,,求點的坐標.
(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,交軸于,若,求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,直線l:y=x﹣與x軸交于點A,經(jīng)過點A的拋物線y=ax2﹣3x+c的對稱軸是x=.
(1)求拋物線的解析式;
(2)平移直線l經(jīng)過原點O,得到直線m,點P是直線m上任意一點,PB⊥x軸于點B,PC⊥y軸于點C,若點E在線段OB上,點F在線段OC的延長線上,連接PE,PF,且PE=3PF.求證:PE⊥PF;
(3)若(2)中的點P坐標為(6,2),點E是x軸上的點,點F是y軸上的點,當PE⊥PF時,拋物線上是否存在點Q,使四邊形PEQF是矩形?如果存在,請求出點Q的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請你將小明的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列小金魚圖案是用長度相同的小木棒按一定規(guī)律拼搭而成,第一條小金魚圖案需8根小木棒,第二條小金魚圖案需14根小木棒,…,按此規(guī)律,
(1)第n條小金魚圖案需要小木棒 根;
(2)如果有30000根小木棒,按照如圖所示拼搭第1條,第2條……,直到第100條金魚,請通過計算說明這些木棒是否夠用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com