【題目】閱讀材料:

我們知道:一條直線經(jīng)過(guò)等腰直角三角形的直角頂點(diǎn),過(guò)另外兩個(gè)頂點(diǎn)分別向該直線作垂線,即可得三垂直模型”如圖①,在中,,,分別過(guò)、向經(jīng)過(guò)點(diǎn)直線作垂線,垂足分別為,我們很容易發(fā)現(xiàn)結(jié)論:

1)探究問(wèn)題:如果,其他條件不變,如圖②,可得到結(jié)論;.請(qǐng)你說(shuō)明理由.

2)學(xué)以致用:如圖③,在平面直角坐標(biāo)系中,直線與直線交于點(diǎn),且兩直線夾角為,且,請(qǐng)你求出直線的解析式.

3)拓展應(yīng)用:如圖④,在矩形中,,,點(diǎn)邊上個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)落在點(diǎn)處,當(dāng)點(diǎn)在矩形外部時(shí),連接,.若為直角三角形時(shí),請(qǐng)你探究并直接寫(xiě)出的長(zhǎng).

【答案】1)理由見(jiàn)解析;(2;(3)長(zhǎng)為3或

【解析】

1)根據(jù)同角的余角相等得到,然后利用AA定理判定三角形相似;

2)過(guò)點(diǎn)交直線于點(diǎn),分別過(guò)、軸,軸,由(1)得,從而得到,然后結(jié)合相似三角形的性質(zhì)和銳角三角函數(shù)求出,,從而確定N點(diǎn)坐標(biāo),然后利用待定系數(shù)法求函數(shù)解析式;

3)分兩種情形討論:①如圖1中,當(dāng)∠PDC=90°時(shí).②如圖2中,當(dāng)∠DPC=90°時(shí),作PFBCF,PHCDH,設(shè)BE=x.分別求解即可.

解:(1)∵,∴

又∵

2)如圖,過(guò)點(diǎn)交直線于點(diǎn),

分別過(guò)、軸,

由(1)得

坐標(biāo) ,

解得:

設(shè)直線表達(dá)式為,代入,

,解得,

∴直線表達(dá)式為

3)解:①如圖1中,當(dāng)∠PDC=90°時(shí),

∵∠ADC=90°

∴∠ADC+PDC=180°,

AD、P共線,

EA=EP,∠AEP=90°,

∴∠EAP=45°,∵∠BAD=90°,

∴∠BAE=45°,∵∠B=90°

∴∠BAE=BEA=45°,

BE=AB=3

②如圖2中,當(dāng)∠DPC=90°時(shí),作PFBCFPHCDH,設(shè)BE=x,

∵∠AEB+PEF=90°,∠AEB+BAE=90°,

∴∠BAE=PEF

在△ABE和△EFP中,

∴△ABE≌△EFP,

EF=AB=3PF=HC=BE=x,

CF=3-5-x=x-2,

∵∠DPH+CPH=90°,∠CPH+PCH=90°,

∴∠DPH=PCH,∵∠DHP=PHC,

∴△PHD∽△CHP

PH2=DHCH,

∴(x-22=x3-x),

x=(舍棄),

BE=,

綜上所述,當(dāng)△PDC是直角三角形時(shí),BE的值為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車(chē),經(jīng)市場(chǎng)調(diào)查知,購(gòu)買(mǎi)3量男式單車(chē)與4輛女式單車(chē)費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車(chē)與4輛女式單車(chē)共需16000元.

(1)求男式單車(chē)和女式單車(chē)的單價(jià);

(2)該社區(qū)要求男式單比女式單車(chē)多4輛,兩種單車(chē)至少需要22輛,購(gòu)置兩種單車(chē)的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形ABCD,圖中陰影部分的面積為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在畫(huà)有方格圖的平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.

(1)將ACB繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn),在方格圖中用直尺畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的A1C1B,則A1點(diǎn)的坐標(biāo)是(_________),C1點(diǎn)的坐標(biāo)是(_________.

(2)在方格圖中用直尺畫(huà)出△ACB關(guān)于原點(diǎn)O的中心對(duì)稱(chēng)圖形△A2C2B2,則A2點(diǎn)的坐標(biāo)是(_________),C2點(diǎn)的坐標(biāo)是(_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某口罩加工廠有兩組工人共人,組工人每人每小時(shí)可加工口罩只,組工人每人每小時(shí)可加工口罩只,兩組工人每小時(shí)一共可加工口罩只.

1)求兩組工人各多少人;

2)由于疫情加重兩組工人均提高了工作效率,一名組工人和一名組工人每小時(shí)共可生產(chǎn)口罩只,若兩組工人每小時(shí)至少加工只口罩,那么組工人每人每小時(shí)至少加工多少只口罩?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)B(,n).連接OB,若SAOB=1.

(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

(2)直接寫(xiě)出不等式組 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖,點(diǎn)A的坐標(biāo)為(01),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角ABC,使∠BAC=90°,如果點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,那么表示yx的函數(shù)關(guān)系的圖像大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)蓄水池有甲、乙兩個(gè)注水管和一個(gè)排水管丙,三個(gè)水管均已關(guān)閉,已知乙注水管的注水速度為10/分.先打開(kāi)乙注水管4分鐘,再打開(kāi)甲注水管,甲、乙兩個(gè)水管均注水20分鐘.設(shè)甲注水管的工作時(shí)間為(分),甲注水管的注水量(升)與時(shí)間(分)的函數(shù)圖象為線段,乙注水管的注水量(升)與時(shí)間(分)的函數(shù)圖象為線段,如圖所示.

1)求甲注水管的總注水量;

2)求線段所對(duì)應(yīng)的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

3)乙注水管打開(kāi)的16分鐘后,打開(kāi)丙出水管.已知出水管丙的排水速度為20/分,求丙出水管打開(kāi)多長(zhǎng)時(shí)間能將蓄水池的水排空.

查看答案和解析>>

同步練習(xí)冊(cè)答案