【題目】如圖1,長方形ABCD中,AB=5,AD=12,E為AD邊上一點,DE=4,動點P從點B出發(fā),沿B→C→D以2個單位/s作勻速運動,設運動時間為t.
⑴ 當t為 s時,△ABP與△CDE全等;
⑵ 如圖2,EF為△AEP的高,當點P在BC邊上運動時,EF的最小值是 ;
⑶ 當點P在EC的垂直平分線上時,求出t的值.
【答案】(1)2;(2) ;(3)t的值為或.
【解析】
(1)由△ABP與△CDE全等可得,通過時間=路程速度可以得出;
(2)當P點運動到C點時,EF最小,據(jù)此利用面積法求解;
(3)分兩種情況討論:當點P在BC上時或當點P在CD上時,分別利用勾股定理求解即可.
解:
⑴當△ABP與△CDE全等時,
∴,
⑵ 如圖示,
依題意得:當P點運動到C點時,EF最小,
∵AB=5,AD=12,
∴由勾股定理可得:
根據(jù) ,可得
即:
∴
⑶ ∵ 點P在EC的垂直平分線上
∴ PC=PE
1.如圖,當點P在BC上時,過點P作PF⊥AD于點F
則 PF=5,AF=BP=2t,PC=12-2t,EF=8-2t
Rt△PFE中,
∴
解得:
2.當點P在CD上時,PE=PC=2t-12,PD=17-2t
∵ ∠D=90°
∴
解得:
綜上所述:當點P在EC的垂直平分線上時, t的值為或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD的一組對邊AD、BC的延長線相交于點E.另一組對邊AB、DC的延長線相交于點F,若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,則AD的長為_____(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運動,設運動時間為t(t>0)秒.
(1)AC= cm;
(2)若點P恰好在∠ABC的角平分線上,求此時t的值;
(3)在運動過程中,當t為何值時,△ACP為等腰三角形(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由. |
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結論時,需添加輔助線,則作法不正確的是( 。
A. 作∠APB的平分線PC交AB于點C
B. 過點P作PC⊥AB于點C且AC=BC
C. 取AB中點C,連接PC
D. 過點P作PC⊥AB,垂足為C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A按逆時針方向旋轉至△AB′C′(B與B′,C與C′分別是對應頂點),使AB′⊥BC,B′C′分別交AC,BC于點D,E,已知AB=AC=5,BC=6,則DE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com