【題目】如圖,等腰的一個銳角頂點(diǎn)是上的一個動點(diǎn),,腰與斜邊分別交于點(diǎn),分別過點(diǎn)作的切線交于點(diǎn),且點(diǎn)恰好是腰上的點(diǎn),連接,若的半徑為4,則的最大值為:( )
A.B.C.6D.8
【答案】A
【解析】
先由等腰三角形的性質(zhì)、切線的性質(zhì)及圓的半徑相等判定四邊形ODFE是正方形,再得出點(diǎn)C在以EF為直徑的半圓上運(yùn)動,則當(dāng)OC經(jīng)過半圓圓心G時,OC的值最大,用勾股定理計算出OG的長度,再加上CG的長度即可.
解:∵等腰Rt△ABC中,∠ACB=90°,
∴∠A=∠B=45°,
∴∠DOE=2∠A=90°,
∵分別過點(diǎn)D,E作⊙O的切線,
∴OD⊥DF,OE⊥EF,
∴四邊形ODFE是矩形,
∵OD=OE=4,
∴四邊形ODFE是正方形,
∴EF=4,
∵點(diǎn)F恰好是腰BC上的點(diǎn),
∴∠ECF=90°
∴點(diǎn)C在以EF為直徑的半圓上運(yùn)動,
∴設(shè)EF的中點(diǎn)為G,則EG=FG=CG=EF=2,且當(dāng)OC經(jīng)過半圓圓心G時,OC的值最大,此時,在Rt△OEG中,OG=,
∴OC=OG+CG=.
故答案為:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是半圓的直徑,為半圓的圓心,是弦,取的中點(diǎn),過點(diǎn)作交的延長線于點(diǎn).
(1)求證:是半圓的切線;
(2)當(dāng),時,求的長;
(3)當(dāng)時,直接寫出面積最大時,點(diǎn)到直徑的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體地攤經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件,設(shè)銷售單價為每件x元,銷售量為y件.
(1)寫出y與x函數(shù)關(guān)系式.
(2)若想每天的銷售利潤恰為640元,同時又要使顧客得到實惠,這種小商品每件售價應(yīng)定為多少元?
(3)這種小商品每件售價應(yīng)定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時,如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面上有且只有4個點(diǎn),這4個點(diǎn)中有一個獨(dú)特的性質(zhì):連結(jié)每兩點(diǎn)可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點(diǎn)稱作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點(diǎn),滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點(diǎn),滿足OA=OB=OC=BC,AB=AC.
(1)如圖,若等腰梯形ABCD的四個頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請再畫出一個四邊形,使它的四個頂點(diǎn)為準(zhǔn)等距點(diǎn),并寫出相等的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為2的等邊三角形,點(diǎn)D與點(diǎn)B分別位于直線AC的兩側(cè),且AD=AC,連結(jié)BD、CD,BD交直線AC于點(diǎn)E.
(1)當(dāng)∠CAD=90°時,求線段AE的長.
(2)過點(diǎn)A作AH⊥CD,垂足為點(diǎn)H,直線AH交BD于點(diǎn)F,
①當(dāng)∠CAD<120°時,設(shè)AE=x,y=(其中S△BCE表示△BCE的面積,S△AEF表示△AEF的面積),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
②當(dāng)時,請直接寫出線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,AD平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=6,AE=3,求:陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a,b,c為常數(shù),a<0)經(jīng)過點(diǎn)(0,2),且關(guān)于直線x=﹣1對稱,(x1,0)是拋物線與x軸的一個交點(diǎn),有下列結(jié)論,其中結(jié)論錯誤的是( )
A.方程ax2+bx+c=2的一個根是x=﹣2
B.若x1=2,則拋物線與x軸的另一個交點(diǎn)為(﹣4,0)
C.若m=4時,方程ax2+bx+c=m有兩個相等的實數(shù)根,則a=﹣2
D.若≤x≤0時,2≤y≤3,則a=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn),是上一點(diǎn),經(jīng)過,兩點(diǎn)的交于點(diǎn),連接,作的平分線交于點(diǎn),連接.
(1)求證:是的切線;
(2)若,,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com