【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD∥CO.
(1)求證:△ADB∽△OBC;
(2)連結(jié)CD,試說(shuō)明CD是⊙O的切線;
(3)若AB=2, ,求AD的長(zhǎng).(結(jié)果保留根號(hào))
【答案】
(1)∵AB是⊙O的直徑,
∴∠ADB=90°,
∵BC是⊙O的切線,
∴∠OBC=90°,
∵AD∥CO,
∴∠A=∠BOC,
∴△ADB∽△OBC
(2)如圖,連接OD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AD∥CO,
∴∠DFO=90°,
∵∠ODB=∠OBD,
∴∠DOF=∠BOF,
∵OD=OB,OC=OC,
在△ODC和△OBC中,
∴△ODC≌△OBC(SAS),
∴∠CDO=∠CBO=90°,
∴CD是⊙O的切線
(3)∵AB=2,
∴OB=1,
∵ ,
∴OC= = .
∵AD∥CO,
∴∠DAB=∠COB,
∵∠ADB=∠OBC=90°,
∴△ADB∽△OBC,
∴ = ,即 = ,
解得AD=
【解析】(1)運(yùn)用∠A=∠BOC,∠ADB=∠OBC證明即可.(2)連接OD,SAS證明△ODC≌△OBC,得出∠CDO=∠CBO=90°,即可得出CD是⊙O的切線;(3)先求出OB,OC的長(zhǎng),再運(yùn)用△ADB∽△OBC,求出AD的長(zhǎng).
【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從下列四個(gè)條件:① , ②,③ ,④ 中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0)和B(0,2 ),對(duì)稱軸為x= .
(1)求拋物線的解析式;
(2)拋物線與x軸交于另一個(gè)交點(diǎn)為C,點(diǎn)D在線段AC上,已知AD=AB,若動(dòng)點(diǎn)P從A出發(fā)沿線段AC以每秒1個(gè)單位長(zhǎng)度的度數(shù)勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從B出發(fā)沿線段BC勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線BD垂直平分?若存在,求出點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的前提下,過(guò)點(diǎn)B的直線l與x軸的負(fù)半軸交于點(diǎn)M,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形與△PBC相似?如果存在,請(qǐng)直接寫(xiě)出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過(guò)點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)九(1)班的學(xué)生人數(shù)為 , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程交由甲、乙兩個(gè)工程隊(duì)來(lái)完成,已知甲工程隊(duì)單獨(dú)完成需要60天,乙工程隊(duì)單獨(dú)完成需要40天
(1)若甲工程隊(duì)先做30天后,剩余由乙工程隊(duì)來(lái)完成,還需要用時(shí) 天
(2)若甲工程隊(duì)先做20天,乙工程隊(duì)再參加,兩個(gè)工程隊(duì)一起來(lái)完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com