【題目】如圖,已知點A在反比例函數(shù) 的圖象上,作,邊BCx軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若的面積為6,則k=___

【答案】12

【解析】

先根據(jù)題意證明BOE∽△CBA,根據(jù)相似比及面積公式得出BO×AB的值即為|k|的值,再由函數(shù)所在的象限確定k的值.

BDRtABC的斜邊AC上的中線,

BD=DC,∠DBC=ACB,

又∠DBC=EBO,

∴∠EBO=ACB,

又∠BOE=CBA=90°

∴△BOE∽△CBA,

,即BC×OE=BO×AB

又∵SBEC=6,

BCEO=6

BC×OE=12=BO×AB=|k|

∵反比例函數(shù)圖象在第一象限,k0

k=12

故答案是:12

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點A、C的坐標;

(2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

(3)在坐標平面內(nèi),是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角標系中,已知ABC三個頂點的坐標分別為A(1,2)B(3,4),C(1,6)

1)畫出△ABC,并求出BC所在直線的解析式;

2)畫出△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點O為圓心,OA為半徑作弧交AB于點A、點C,交OB于點D,若OA3,則陰影都分的面積為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:

數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB10cm,E為對角線BD上一動點,連接AE,CE,過E點作EFAE,交直線BC于點FE點從B點出發(fā),沿著BD方向以每秒2cm的速度運動,當點E與點D重合時,運動停止.設△BEF的面積為ycm2,E點的運動時間為x秒.

1)求證:CEEF;

2)求yx之間關(guān)系的函數(shù)表達式,并寫出自變量x的取值范圍;

3)求△BEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,于點,,為了研究圖中線段之間的關(guān)系,設,,

1)可通過證明,得到關(guān)于的函數(shù)表達式__________,其中自變量的取值范圍是___________;

2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點,畫出該函數(shù)的圖象;

3)借助函數(shù)圖象,回答下列問題:①的最小值是__________;②已知當時,的形狀與大小唯一確定,借助函數(shù)圖象給出的一個估計值(精確到0.1)或者借助計算給出的精確值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為美化小區(qū)環(huán)境,物業(yè)計劃安排甲、乙兩個工程隊完成小區(qū)綠化工作.已知甲工程隊每天綠化面積是乙工程隊每天綠化面積的2倍,甲工程隊單獨完成600m2的綠化面積比乙工程隊單獨完成600m2的綠化面積少用2天.

1)求甲、乙兩工程隊每天綠化的面積分別是多少m2;

2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊每天綠化費為0.3萬元,付給乙工程隊每天綠化費為 0.2萬元,若要使這次的綠化總費用不超過10萬元,則至少應安排甲工程隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E作直線lBC

(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;

(2)若∠ABC的平分線BFAD于點F,求證:BEEF;

(3)(2)的條件下,若DE4,DF3,求AF的長.

查看答案和解析>>

同步練習冊答案