【題目】五個城市的國際標(biāo)準(zhǔn)時間(單位:時)在數(shù)軸上表示如圖所示.對應(yīng)于北京時間2009年1月1日上午9時這一時刻,下列說法錯誤的是( ).
A.倫敦時間為2009年1月1日凌晨1時
B.紐約時間為2008年12月31日晚上20時
C.圣多明各時間為2008年12月31日晚上22時
D.首爾時間為2009年1月1日上午10時
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過點(diǎn),對稱軸為直線,下列結(jié)論: ; ; ; 若點(diǎn)、點(diǎn)、點(diǎn)在該函數(shù)圖象上,則; 若方程的兩根為和,且,則其中正確的結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)都在數(shù)軸上,為原點(diǎn).
(1)點(diǎn)表示的數(shù)是 ;
(2)若點(diǎn)以每秒3個單位長度的速度沿數(shù)軸運(yùn)動,則1秒后點(diǎn)表示的數(shù)是 ;
(3)若點(diǎn)都以每秒3個單位長度的速度沿數(shù)軸向右運(yùn)動,而點(diǎn)不動,秒后有一個點(diǎn)是一條線段的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面上有一幢房屋BC與一棵樹DE,在地面觀測點(diǎn)A處測得屋頂C與樹梢D的仰角分別是45°與60°,∠CAD=60°,在屋頂C處測得∠DCA=90°.若房屋的高BC=6米,則樹高DE的長度為( 。
A. 3 B. 6 C. 3 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,射線OM平分∠AOC,ON平分∠BOC.
(1)如果∠BOC=30°,求∠MON的度數(shù);
(2)如果∠AOB=α,∠BOC=30°,其他條件不變,求∠MON的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市中學(xué)生參加“科普知識”競賽成績的情況,隨機(jī)抽查了部分參賽學(xué)生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答下列問題:
組別 | 分?jǐn)?shù)段(分) | 頻數(shù) | 頻率 |
A組 | 60≤x<70 | 30 | 0.1 |
B組 | 70≤x<80 | 90 | n |
C組 | 80≤x<90 | m | 0.4 |
D組 | 90≤x<100 | 60 | 0.2 |
(1)在表中:m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)4個小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎典禮,恰好抽中A、C兩組學(xué)生的概率是多少?并列表或畫樹狀圖說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張正方形桌子可坐4人,按圖1—圖3的方式將桌子拼在一起并安排人員就坐.
(1)兩張桌子拼在一起可做 人,三張桌子拼在一起可坐 人,張桌子拼在一起可坐 人
(2)一家酒樓有60張這樣的桌子,按照圖1—圖3方式每4張拼成一個大桌子,則60張桌子可拼成15張大桌子,共可坐 人
(3)在問題(2)中,若每4張桌子拼成一個大的正方形桌子,則可坐 人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)的圖象與一次函數(shù)y=x的圖象交于A、B兩點(diǎn)(點(diǎn)A在第一象限).
(1)當(dāng)點(diǎn)A的橫坐標(biāo)為4時.
①求k的值;
②根據(jù)反比例函數(shù)的圖象,直接寫出當(dāng)﹣4<x<2(x≠0)時,y的取值范圍;
(2)點(diǎn)C為y軸正半軸上一點(diǎn),∠ACB=90°,且△ACB的面積為10,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com