【題目】某鐵件加工廠用如圖所示的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)加工成如圖.所示的豎式與橫式兩種無蓋的長方體鐵容器.(加工時接縫材料不計)

(1)如果加工豎式鐵容器與橫式鐵容器各 1 個,則共需要長方形鐵片 張,正方形鐵片 張.

(2)現(xiàn) 有長方形鐵片 2017 張,正方形鐵片 1178 張,如果加工成這兩種鐵容器,剛好鐵片全部用完,那加工的豎式鐵容器、橫式鐵容器各有多少個?

(3)把長方體鐵容器加蓋可以加工成為鐵盒.現(xiàn)用 35 張鐵板做成長方形鐵片和正方形鐵片,已知每張鐵板可做成 3 個長方形鐵片或 4 個正方形鐵片,也可以將一張鐵板裁出 1 個長方形鐵片和 2 個正方形鐵片.若充分利用這些鐵板加工成鐵盒,則最多可以加工成多少個鐵盒?

【答案】173 2)加工的豎式鐵容器有100個,橫式鐵容器各有539個 (3)最多可加工鐵盒19

【解析】

1)如圖得加工1個豎式鐵容器需要長方形鐵片4張,正方形鐵片1 張;加工1個橫式鐵容器需要長方形鐵片3張,正方形鐵片2 張,即可求解.

2)設(shè)加工的豎式鐵容器有x個,橫式鐵容器各有y個,根據(jù)題意列出方程組求解即可.

3)設(shè)做長方形鐵片的鐵板m張,做正方形鐵片的鐵板n張,根據(jù)題意列出方程組求解即可.

1)如圖,加工1個豎式鐵容器需要長方形鐵片4張,正方形鐵片1 張;加工1個橫式鐵容器需要長方形鐵片3張,正方形鐵片2 張.

故如果加工豎式鐵容器與橫式鐵容器各 1 個,則共需要長方形鐵片7張,正方形鐵片3 張.

2)設(shè)加工的豎式鐵容器有x個,橫式鐵容器各有y個,由題意得

解得

故加工的豎式鐵容器有100個,橫式鐵容器各有539個.

3)設(shè)做長方形鐵片的鐵板m張,做正方形鐵片的鐵板n張,由題意得

解得

∴在這35張鐵板中,25張做長方形鐵片可做(片),9張做正方形鐵片可做(片),剩1張可裁出1個長方形鐵片和2個正方形鐵片

共可做長方形鐵片(片),正方形鐵片(片)

∴可做鐵盒(個)

答:最多可加工鐵盒19個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當EFC是直角三角形時,那么BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,O 為坐標原點,P是反比例函數(shù)圖象上任意一點,以P為圓心,PO為半徑的圓與x軸交于點 A、與y軸交于點B,連接AB

1)求證:P為線段AB的中點;

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上線段AB2個單位長度,CD4個單位長度,點A在數(shù)軸上表示的數(shù)是﹣10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個單位長度的速度向右勻速運動,同時線段CD以每秒2個單位長度的速度向左勻速運動.

(1)問:運動多少秒后,點B與點C互相重合?

(2)當運動到BC6個單位長度時,則運動的時間是多少秒?

(3)P是線段AB上一點,當點B運動到線段CD上時,是否存在關(guān)系式?若存在,求線段PD的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:OB、OCOM、ON是∠AOD內(nèi)的射線.

(1)如圖1,若∠AOD=156°,OM平分∠AOBON平分∠BOD,∠BOD=96°,則∠MON的度數(shù)為   

(2)如圖2,若∠AOD=m°,∠NOC=23°OM平分∠AOB,ON平分∠BOD,求∠COM的度數(shù)(m的式子表示)

(3)如圖3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOCON平分∠BOD,當∠BOC在∠AOD內(nèi)繞著點O2°/秒的速度逆時針旋轉(zhuǎn)t秒時,∠AOM和∠DON中的一個角的度數(shù)恰好是另一個角的度數(shù)的兩倍,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的初始位置位于數(shù)軸上表示的點,現(xiàn)對點做如下移動:第次向左移動個單位長度至點,第次從點向右移動個單位長度至點,第次從點向左移動個單位長度至點,第次從點向右移動個單位長度至點,,依此類推。這樣第_____次移動到的點到原點的距離為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=15,BC=14,AC=13,求ABC的面積. 某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路,完成解答過程.

(1)ADBCD,設(shè)BD=x,用含x的代數(shù)式表示CD,則CD=________;

(2)請根據(jù)勾股定理,利用AD作為橋梁建立方程,并求出x的值;

(3)利用勾股定理求出AD的長,再計算三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定x的一元一次方程axb的解為ba,則稱該方程是差解方程,例如:3x4.5的解為4.531.5,則該方程3x4.5就是差解方程,請根據(jù)上述規(guī)定解答下列問題:

(1)已知關(guān)于x的一元一次方程4xm差解方程,則m______.

(2)已知關(guān)于x的一元一次方程4xab+a差解方程,它的解為a,則a+b_____.

(3)已知關(guān)于x的一元一次方程4xmn+m和﹣2xmn+n都是差解方程,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2m][(mn+n)22n]的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圖2中,正方形ABCD的邊長為6,點P從點B出發(fā)沿邊BC—CD以每秒2個單位長的速度向點D勻速運動,以BP為邊作等邊三角形BPQ,使點Q在正方形ABCD內(nèi)或邊上,當點Q恰好運動到AD邊上時,點P停止運動。設(shè)運動時間為t秒(t≥0)。

(1)當t=2時,點QBC的距離=_____;

(2)當點PBC邊上運動時,求CQ的最小值及此時t的值;

(3)若點QAD邊上時,如圖2,求出t的值;

(4)直接寫出點Q運動路線的長。

查看答案和解析>>

同步練習(xí)冊答案