【題目】如圖在平面直角坐標(biāo)系中反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)P(4,3)和點(diǎn)B(m,n)(其中0<m<4),作BA⊥x軸于點(diǎn)A,連接PA、OB,過(guò)P、B兩點(diǎn)作直線PB,且S△AOB=S△PAB
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
【答案】(1)y=;(2)B(2,6).
【解析】
(1)直接把P點(diǎn)坐標(biāo)代入y=可求出k的值;
(2)利用三角形面積公式可判斷點(diǎn)O和點(diǎn)P到AB的距離都是2,然后計(jì)算自變量為2對(duì)應(yīng)的反比例函數(shù)值即可得到當(dāng)B點(diǎn)坐標(biāo).
(1)把P(4,3)代入y=得k=4×3=12,
∴反比例函數(shù)解析式為y=;
(2)∵S△AOB=S△PAB,
∴P點(diǎn)到AB的距離等于OA,
而P點(diǎn)到y軸的距離為4,AB⊥x軸,
∴點(diǎn)O和點(diǎn)P到AB的距離都是2,
即B點(diǎn)的橫坐標(biāo)為2,
當(dāng)x=2時(shí),y==6,
∴B(2,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)“精準(zhǔn)扶貧”精神,某單位決定運(yùn)送一批物資到某貧困村,貨車(chē)自早上8時(shí)出發(fā),行駛一段路程后發(fā)現(xiàn)未帶貨物清單,便立即以50km/h的速度回返,與此同時(shí)單位派車(chē)去送清單,途中相遇拿到清單后,貨車(chē)又立即掉頭并開(kāi)到目的地,整個(gè)過(guò)程中,貨車(chē)距離出發(fā)地的路程s(km)與行駛時(shí)間t(h)的函數(shù)圖象如圖所示.
(1)兩地相距 千米,當(dāng)貨車(chē)司機(jī)拿到清單時(shí),距出發(fā)地 千米.
(2)試求出途中BC段的函數(shù)表達(dá)式,并計(jì)算出中午12點(diǎn)時(shí),貨車(chē)離貧困村還有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,點(diǎn)P、Q同時(shí)從 頂點(diǎn)A出發(fā),點(diǎn)P沿A→B→C→D方向以2厘米/秒的速度前進(jìn),點(diǎn)Q沿A→D方向以1厘米/秒的速度前進(jìn),當(dāng)Q到達(dá)點(diǎn)D時(shí),兩個(gè)點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,P、Q經(jīng)過(guò)的路徑與線段PQ圍成的圖形的面積為y(cm2),則y與x的函數(shù)圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為的直徑,P為BA延長(zhǎng)線上的一點(diǎn),D在上(不與點(diǎn)A,點(diǎn)B重合),連結(jié)PD交于點(diǎn)C,且PC=OB.設(shè),下列說(shuō)法正確的是( )
A. 若,則
B. 若 ,則
C. 若 ,則
D. 若 ,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(–1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開(kāi)展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問(wèn)卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門(mén)對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進(jìn)入社會(huì)就業(yè);D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問(wèn):
(1)此次共調(diào)查了多少名初中畢業(yè)生?
(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請(qǐng)估計(jì)2019年初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線x=1的拋物線經(jīng)過(guò)A(﹣1,0)、C(0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)D在y軸上,且OB=3OD
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t
①當(dāng)0<t<3時(shí),求四邊形CDBP的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)C、D、Q、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com