精英家教網(wǎng)如圖,已知AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC,若OA=2,且AD+OC=6,則CD=
 
分析:連接BD,根據(jù)AD∥OC,易證得OC⊥BD,根據(jù)垂徑定理知:OC垂直平分BD,可得CD=CB,因此只需求出CB的長(zhǎng)即可;
延長(zhǎng)AD,交BC的延長(zhǎng)線于E,則OC是△ABC的中位線;設(shè)未知數(shù),表示出OC、AD、AE的長(zhǎng),然后在Rt△ABE中,表示出BE的長(zhǎng);最后根據(jù)切割線定理即可求出未知數(shù)的值,進(jìn)而可在Rt△CBO中求出CB的長(zhǎng),即CD的長(zhǎng).
解答:精英家教網(wǎng)解:連接BD,則∠ADB=90°;
∵AD∥OC,
∴OC⊥BD;
根據(jù)垂徑定理,得OC是BD的垂直平分線,即CD=BC;
延長(zhǎng)AD交BC的延長(zhǎng)線于E;
∵O是AB的中點(diǎn),且AD∥OC;
∴OC是△ABE的中位線;
設(shè)OC=x,則AD=6-x,AE=2x,DE=3x-6;
Rt△ABE中,根據(jù)勾股定理,得:BE2=4x2-16;
由切割線定理,得BE2=ED•AE=2x(3x-6);
∴4x2-16=2x(3x-6),解得x=2,x=4;
當(dāng)x=2時(shí),OC=OB=2,由于OC是Rt△OBC的斜邊,顯然x=2不合題意,舍去;
當(dāng)x=4時(shí),OC=4,OB=2;
在Rt△OBC中,CB=
OC2-OB2
=2
3

∴CD=CB=2
3
點(diǎn)評(píng):本題主要考查了圓周角定理、平行線的性質(zhì)、切割線定理、中位線定理等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案