在正方形ABCD中,P是BC上一點,且BP=3PC,Q是CD得中點.
(1)證明△ADQ∽△QCP;(2)求證:AQ⊥QP.

解:(1)∵BP=3PC,Q是CD的中點
==,又∵∠ADQ=∠QCP=90°,
∴△ADQ∽△QCP;

(2)∵△ADQ∽△QCP,
∴∠AQD=∠QPC,∠DAQ=∠PQC,
∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,
∴AQ⊥QP.
分析:(1)根據(jù)BP=3PC和Q是CD的中點,可以求得=,即可求證△ADQ∽△QCP;
(2)根據(jù)△ADQ∽△QCP可以求得∠PQC+∠DQA=90°,即可解題.
點評:本題考查了相似三角形對應(yīng)角相等的性質(zhì),考查了相似三角形的判定,本題中求證△ADQ∽△QCP是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點,F(xiàn)為DC上的一點,且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在正方形ABCD中,點G是BC上任意一點,連接AG,過B,D兩點分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點,求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、在正方形ABCD中,P為對角線BD上一點,PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,P是CD上一點,且AP=BC+CP,Q為CD中點,求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習冊答案