【題目】如圖,在下列條件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有( 。
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)
【答案】C
【解析】①由∠1=∠2,得到AD∥BC,本選項(xiàng)不合題意;②由∠BAD=∠BCD,不能判定出平行,本選項(xiàng)不合題意;③由∠ABC=∠ADC且∠3=∠4,得到∠ABC﹣∠4=∠ADC﹣∠3,即∠ABD=∠CDB,得到AB∥CD,本選項(xiàng)符合題意;④由∠BAD+∠ABC=180°,得到AD∥BC,本選項(xiàng)不合題意,則符合題意的只有1個(gè).故選:C
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行線的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E是BC的中點(diǎn),且∠AED=90°.當(dāng)AD=10cm時(shí),AB等于( ).
A.10cm
B.5cm
C. cm
D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方形的周長(zhǎng)是24cm,其中一邊長(zhǎng)為xcm(x>0),面積為y,則這個(gè)長(zhǎng)方形面積y與邊長(zhǎng)x之間的關(guān)系可以表示為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是滿足二次函數(shù)y=ax2+bx+c的五組數(shù)據(jù),x1是方程ax2+bx+c=0的一個(gè)解,則下列選項(xiàng)中正確的是( )
x | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 |
y | -0. 80 | -0.54 | -0.20 | 0. 22 | 0. 72 |
A.1.6<x1<1.8B.2.0<x1<2.2C.1.8<x1<2.D.2.2<x1<2.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=90°,AD∥BC , BE⊥CD于E交AD的延長(zhǎng)線于F , DC=2AD , AB=BE .
(1)求證:AD=DE .
(2)求證:四邊形BCFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD , CB=CD , E是CD上一點(diǎn),BE交AC于F , 連接DF .
(1)證明:∠BAC=∠DAC , ∠AFD=∠CFE .
(2)若AB∥CD , 試證明四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自然數(shù)是人類歷史上最早出現(xiàn)的數(shù).自然數(shù)在_______和_______中有著廣泛的應(yīng)用,人們還常常用自然數(shù)來(lái)給事物______和_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的解題過(guò)程,并在橫線上補(bǔ)全推理過(guò)程或依據(jù). 已知:如圖,DE∥BC,DF、BE分別平分∠ADE、∠ABC.
試說(shuō)明∠FDE=∠DEB.
解:∵DE∥BC(已知)
∴∠ADE= . ()
∵DF、BE分別平分∠ADE、∠ABC (已知)
∴∠ADF= ∠ADE
∠ABE= ∠ABC(角平分線定義)
∴∠ADF=∠ABE()
∴DF∥ . ()
∴∠FDE=∠DEB.()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com