【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____.
【答案】135°
【解析】
如圖,連接BD,由旋轉(zhuǎn)的性質(zhì)可得AB=AD,∠BAD=60°,可證△ABD為等邊三角形,由“SSS”可證△ABE≌△DBE,可得∠ABE=∠DBE=30°,由三角形內(nèi)角和定理可求解.
解:如圖,連接BD,
∵將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)60°,得到△ADE,AC=AB
∴AB=AD,∠BAD=60°,AE=DE,∠ADE=45°
∴△ABD為等邊三角形,
∴∠ABD=60°,AB=BD,
又∵AE=DE,BE=BE,
∴△ABE≌△DBE(SSS)
∴∠ABE=∠DBE=30°
∴∠ABE=∠DBE=30°,
又∵∠BDE=∠ADB﹣∠ADE=15°,
∴∠BED=135°.
故答案為:135°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.
(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是 ;
(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護(hù)人員來自同一所醫(yī)院的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線與y軸交于點(diǎn)D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個動點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動時(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥y軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個工程隊(duì)負(fù)責(zé)完成.已知甲工程隊(duì)每天完成的工作量是乙工程隊(duì)每天完成工作量的2倍,且甲工程隊(duì)單獨(dú)完成此項(xiàng)工程比乙工程隊(duì)單獨(dú)完成此項(xiàng)工程少用10天.
(1)求甲、乙兩工程隊(duì)每天各完成多少米?
(2)如果甲工程隊(duì)每天需工程費(fèi)7000元,乙工程隊(duì)每天需工程費(fèi)5000元,若甲隊(duì)先單獨(dú)工作若干天,再由甲乙兩工程隊(duì)合作完成剩余的任務(wù),支付工程隊(duì)總費(fèi)用不超過79000元,則兩工程隊(duì)最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,∠CBD=∠A.
(1)求證:BC為⊙O的切線;
(2)若E為中點(diǎn),BD=12,sin∠BED=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給拋物線y=a(x﹣h)2+k(a≠0)定義一種變換,先作這條拋物線關(guān)于原點(diǎn)對稱的拋物線,再將得到的對稱拋物線向上平移m(m>0)個單位長度,得到新的拋物線ym,則我們稱ym為二次函數(shù)y=a(x﹣h)2+k(a≠0)的m階變換.若拋物線M的6階變換的關(guān)系式為.
(1)拋物線M的函數(shù)表達(dá)式為 ;
(2)若拋物線M的頂點(diǎn)為點(diǎn)A,與r軸相交的兩個交點(diǎn)中的左側(cè)交點(diǎn)為點(diǎn)B,則在拋物線上是否存在點(diǎn)P,使點(diǎn)P與直線AB的距離最短?若存在,請求出此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個小球,記下數(shù)字為m;放回盒子搖勻后,再由小華隨機(jī)取出一個小球,記下數(shù)字為n.
(1)用列表法或畫樹狀圖表示出(m,n)的所有可能出現(xiàn)的結(jié)果;
(2)小明認(rèn)為點(diǎn)(m,n)在一次函數(shù)y=x+2的圖象上的概率一定大于在反比例函數(shù)y=的圖象上的概率,而小華卻認(rèn)為兩者的概率相同.你贊成誰的觀點(diǎn)?分別求出點(diǎn)(m,n)在兩個函數(shù)圖象上的概率,并說明誰的觀點(diǎn)正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD.
(1)若M,N是BD上兩點(diǎn),且BM=DN,AC=2OM,求證:四邊形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①分別以點(diǎn)和為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn)和;
②作直線,交于點(diǎn).
請你觀察圖形解答下列問題:
(1)與的位置關(guān)系:
直線是線段的____________線;
(2)若,,求矩形的對角線的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com