【題目】如圖,在銳角ABC中,AB=6,BAC=45°,BAC的平分線交BC于點D,M,N分別是ADAB上的動點,則BM+MN的最小值是 ( )

A. B. C. 6 D. 3

【答案】B

【解析】

BHAC,垂足為H,交ADM′點,過M′點作M′N′AB,垂足為N′,則BM′+M′N′為所求的最小值,再根據(jù)AD是∠BAC的平分線可知M′H=M′N′,再由銳角三角函數(shù)的定義即可得出結論.

如圖,BHAC,垂足為H,ADM,M點作MNAB,垂足為N′,BM′+MN為所求的最小值,

AD是∠BAC的平分線,

MH=MN′,

BH是點B到直線AC的最短距離(垂線段最短),

BM+MN的最小值是BM′+MN′=BM′+MH=BH

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,、分別平分,,則________,若、分別平分,的外角平分線,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(m﹣1)x2+x+1=0有實數(shù)根,則m的取值范圍是(
A.m
B.m>1
C.m<1
D.m 且m≠1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若BC=EC,BCE=ACD,則添加不能使ABC≌△DBC的條件是(

AAB=DE BB=E CAC=DC DA=D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程.
(1)(x﹣1)2=4;
(2)x2+3x﹣4=0;
(3)4x(2x+1)=3(2x+1);
(4)2x2+5x﹣3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,AB=CB,點E在邊BC上,點F在邊AB的延長線上,BE=BF.

(1)求證:ABE≌△CBF;

(2)若∠CAE=30°,求∠ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紙箱廠用如圖1所示的長方形和正方形紙板,做成如圖2所示的豎式與橫式兩種長方體形狀的有底無蓋紙盒.

1)現(xiàn)有正方形紙板172張,長方形紙板330張.若要做兩種紙盒共l00個,設做豎式紙盒x個.

根據(jù)題意,完成以下表格:

紙盒
紙板

豎式紙盒()

橫式紙盒()

x


正方形紙板()


2(100-x)

長方形紙板()

4x


按兩種紙盒的數(shù)量分,有哪幾種生產方案?

2)若有正方形紙板112張,長方形紙板張,做成上述兩種紙盒,紙板恰好用完.已知100<<110,則的值是 .

查看答案和解析>>

同步練習冊答案