【題目】嘉淇同學家的飲水機中原有水的溫度為20 ℃,其工作過程如圖所示.在一個由20 ℃加熱到100 ℃再降溫到20 ℃的過程中,水溫記作y(℃),從開始加熱起時間變化了x(分),加熱過程中,y與x滿足一次函數(shù)關系,水溫下降過程中,y與x成反比例,當x=20時,y=40.

(1)寫出水溫下降過程中y與x之間的函數(shù)表達式,并求出x為何值時,y=100;

(2)求加熱過程中y與x之間的函數(shù)表達式;

(3)求當x為何值時,y=80.

問題解決

若嘉淇同學上午八點將飲水機通電開機后立刻外出散步,預計九點前回到家中,若嘉淇想喝到不低于50 ℃的水,則直接寫出她外出的時間m(分)的取值范圍.

【答案】(1) 8(2) y=10x+20(0≤x<8)(3)當x=6或x=10時,y=80[問題解決]外出時間m(分)的取值范圍為3≤m≤16或43≤m≤56.

【解析】(1)根據(jù)待定系數(shù)法可求飲水機水溫的下降過程中yx的函數(shù)關系式,再求出y=100x的值即可求解;

(2)根據(jù)待定系數(shù)法可求加熱過程中yx之間的函數(shù)關系;

(3)分兩種情況:加熱過程中;降溫過程中;y=80x的值即可求解;

問題解決:根據(jù)一次函數(shù)和反比例函數(shù)的增減性即可求解.

1)在水溫下降過程中,設水溫y(℃)與開機時間x(分)的函數(shù)關系式為:y=,

依據(jù)題意,得:100=,

m=800,

y=,

y=100時,100=,

解得:x=8;

(2)設水溫y(℃)與開機時間x(分)的函數(shù)關系為:y=kx+b,

依據(jù)題意,得,

解得:

故此函數(shù)解析式為:y=10x+20;

(3)當y=80時:

加熱過程中:10x+20=80,解得x=6;

降溫過程中:=80,解得x=10;

綜上所述,x=610時,y=80;

問題解決:外出時間m(分鐘)的取值范圍為3≤m≤1643≤m≤56.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進行有關運算和解題,這種解題方法叫做配方法.

如:①用配方法分解因式:a2+6a+8

解:原式=a2+6a+8+11a2+6a+91=(a+2)(a+4

Ma22ab+2b22b+2,利用配方法求M的最小值,

解:a22ab+2b22b+2a22ab+b2+b22b+1+1=(ab2+b12+1

∵(ab2≥0,(b12≥0

∴當ab1時,M有最小值1

請根據(jù)上述材料解決下列問題:

1)在橫線上添加一個常數(shù),使之成為完全平方式:x2x+   

2)用配方法因式分解:x24xy+3y2

3)若Mx2+2x1,求M的最小值.

4)已知x2+2y2+z22xy2y4z+50,則x+y+z的值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由太原開往運城的D5303次列車,途中有6個停車站,這次列車的不同票價最多有( )

A. 28 B. 15 C. 56 D. 30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠A55°,將ABC沿DE翻折后,點A落在BC邊上的點A處.如果∠AEC70°,那么∠ADB的度數(shù)為( 。

A. 35°B. 40°C. 45°D. 50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AMMNM,BNMNN

(1)MN=AM+BN成立嗎?為什么?

(2)若過點C在△ABC內作直線MNAMMNM,BNMNN,則AM、BNMN之間有什么關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MNPQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關系是S1_____S2;(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關系式;

(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個加油站AB,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,CA=CB=4,分別以A,B,C為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6,BC8,PAB邊上不與A,B重合的一動點,過點P分別作PEAC于點E,PFBC于點F,則線段EF的最小值是______

查看答案和解析>>

同步練習冊答案