【題目】已知:正方形ABCD的邊長為4cm,點E從點A出發(fā)沿AD方向以1cm/秒的速度運動,與此同時,點F也從點D出發(fā)沿DC方向相同的速度運動,記運動的時間為t(0≤t≤4),AF與BE交于P點.
(1)如圖,在運動過程中,AF與BE相等嗎?請說明理由.
(2)在運動過程中,要使得△BPC是等腰三角形,t應(yīng)為何值?請畫出圖形,并求出所有滿足條件的t值.
【答案】
(1)解:結(jié)論:AF=BE,
證明:如圖1中,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAE=∠D=90°,
在△ABE和△DAF中,
,
∴△ABE≌△DAF,
∴BE=AF.
(2)解:①如圖2中,
當(dāng)CP=CB時,作CM⊥BE垂足為O,交AB于M.
∵△ABE≌△DAF,
∴∠ABE=∠DAF,
∵∠ABE+∠AEB=90°,
∴∠DAF+∠AEB=90°
∴∠APE=90°,
∴AF⊥BE,
∴OM∥AP,
∵OP=OB,
∴AM=BM,
∵∠ABE+∠AEB=90°∠ABE+∠CMB=90°,
∴∠AEB=∠CMB,
在△ABE和△CBM中,
,
∴△ABE≌△CBM,
∴AE=BM=2,
∴t=2,
②如圖3中,
當(dāng)點E運動到與點D重合,點F運動到與點C重合時,△PBC是等腰三角形,此時t=4,
③當(dāng)t=0時,點E在點A處,點F在點D處,則AF于BE的交點P于點A重合,此時,△BPC顯然是等腰直角三角形
∴t=0或2或4時,△BPC是等腰三角形
【解析】(1)結(jié)論:AF=BE,只要證明△ABE≌△DAF即可.(2)分兩種情形討論:①如圖2中,當(dāng)CP=CB時,作CM⊥BE垂足為O,交AB于M,先證明AM=BM,再證明△ABE≌△CBM即可,②如圖3中,當(dāng)點E運動到與點D重合,點F運動到與點C重合時,△PBC是等腰三角形,求出t即可.
【考點精析】關(guān)于本題考查的等腰三角形的判定和正方形的性質(zhì),需要了解如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為2的等邊三角形,點D在邊BC上,將△ABD沿著直線AD翻折,點B落在點B1處,如果B1D⊥AC,那么BD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:數(shù)學(xué)活動課上老師出示問題,如圖1,有邊長為a的正方形紙片一張,三邊長分別為a、b、c的全等直角三角形紙片兩張,且b .請你用這三張紙片拼出一個圖案,并將這個圖案的某部分進行旋轉(zhuǎn)或平移變換之后,提出一個問題(可以添加其他條件,例如可以給出a、b的值等等).
解決問題:
下面是兩個學(xué)習(xí)小組拼出圖案后提出的問題,請你解決他們提出的問題.
(1)“愛心”小組提出的問題是:如圖2,將△DFC繞點F逆時針旋轉(zhuǎn),使點D恰好落在AD邊上的點D′處,猜想此時四邊形AEFD′是什么特殊四邊形,并加以證明;
(2)“希望”小組提出的問題是:如圖3,點M為BE中點,將△DCF向左平移至DF恰好過點M時停止,且補充條件a=6,b=2,求△DCF平移的距離.
自主創(chuàng)新:
(3)請你仿照上述小組的同學(xué),在下面圖4的空白處用實線畫出你拼出的圖案,用虛線畫出變換圖,并在橫線處寫出你提出的問題.(不必解答)
你提出的問題: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,第一個正方形ABCD的位置如圖所示,點A的坐標(biāo)為(2,0),點D的坐標(biāo)為(0,4).延長CB交x軸于點A1 , 作第二個正方形A1B1C1C;延長C1B1交x軸于點A2 , 作第三個正方形A2B2C2C1 , …,按這樣的規(guī)律進行下去,第2016個正方形的面積為( )
A.20×( )4030
B.20×( )4032
C.20×( )2016
D.20×( )2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標(biāo)為(3,0).點P是拋物線上一個動點,且在直線BC的上方.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( )
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+ )米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為 米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是直線l上的兩點,AB=4厘米,過l外一點C作CD∥l,射線BC與l所組成的銳角為60°,線段BC=2厘米,動點P、Q分別從B、C同時出發(fā),P以1厘米/秒的速度,沿由B向C的方向運動;Q以2厘米/秒的速度,沿由C向D的方向運動,設(shè)P、Q運動的時間為t秒,當(dāng)t>2時,PA交CD于點E.
(1)用含t的代數(shù)式分別表示CE和QE的長;
(2)求△APQ的面積s與t的函數(shù)表達式;
(3)當(dāng)QE恰好平分△APQ的面積時,QE的長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com