【題目】已知在△ABC中,∠B=90°,以AB上的一點(diǎn)O為圓心,以O(shè)A為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長.

【答案】
(1)證明:連接DE,

∵AE是直徑,

∴∠ADE=90°,

∴∠ADE=∠ABC,

∵∠DAE=∠BAC,

∴△ADE∽△ABC,

= ,

∴ACAD=ABAE;


(2)解:連接OD,

∵BD是⊙O的切線,

∴OD⊥BD,

在RT△OBD中,OE=BE=OD,

∴OB=2OD,

∴∠OBD=30°,

同理∠BAC=30°,

在RT△ABC中,AC=2BC=2×2=4.


【解析】(1)連接DE,根據(jù)圓周角定理求得∠ADE=90°,得出∠ADE=∠ABC,進(jìn)而證得△ADE∽△ABC,根據(jù)相似三角形對應(yīng)邊成比例即可求得結(jié)論;(2)連接OD,根據(jù)切線的性質(zhì)求得OD⊥BD,在RT△OBD中,根據(jù)已知求得∠OBD=30°,進(jìn)而求得∠BAC=30°,根據(jù)30°的直角三角形的性質(zhì)即可求得AC的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算 ﹣(π﹣3)0+(﹣ 1 +| ﹣2|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC內(nèi)接于⊙O,點(diǎn)D在⊙O外(與點(diǎn)C在AB同側(cè)),∠ABD=90°,下列結(jié)論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結(jié)論為(
A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊AB上,且BE=2AE.將△ADE沿ED對折至△FDE,延長EF交邊BC于點(diǎn)G,連結(jié)DG,BF.下列結(jié)論:①△DCG≌△DFG;②BG=GC;③DG∥BF;④SBFG=3.其中正確的結(jié)論是(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(3,0),C(1,4),與y軸交于點(diǎn)E.
(1)求拋物線的解析式
(2)點(diǎn)F在第三象限的拋物線上,且SBEF=15,求點(diǎn)F的坐標(biāo)

(3)點(diǎn)P是x軸上一個(gè)動點(diǎn),過P作直線l∥AE交拋物線于點(diǎn)Q,若以A,P,Q,E為頂點(diǎn)的四邊形是平行四邊形,請直接寫出符合條件的點(diǎn)Q的坐標(biāo);如果沒有,請通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù): ≈1.73, ≈1.41.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個(gè)單位長度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請?jiān)趛軸右側(cè)畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.

查看答案和解析>>

同步練習(xí)冊答案