【題目】(題文)正整數(shù)按圖中的規(guī)律排列,請寫出第18,20列的數(shù)字:_____

【答案】343

【解析】

根據(jù)第一行第一列的數(shù)為1,第二列的數(shù)為2,第二行第一列的數(shù)為4,第三列的數(shù)為6,6=4+2,第三行第一列的數(shù)為9,第四列的數(shù)為12,12=9+3,第四行第一列的數(shù)為16,第五列的數(shù)為20,20=16+4,…依此類推,n行第n+1列的數(shù)為.

第一行第一列的數(shù)為1,第二列的數(shù)為2,

第二行第一列的數(shù)為4,第三列的數(shù)為6,6=4+2,

第三行第一列的數(shù)為9,第四列的數(shù)為12,12=9+3,

第四行第一列的數(shù)為16,第五列的數(shù)為20,20=16+4,

依此類推,18行第一列的數(shù)為182=324,20列的數(shù)為324+19=343.

故答案為:343.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用小立方體搭成一個幾何體,從正面和上面看到該幾何體的形狀圖如圖所示,搭建這樣的幾何體最多要幾個小立方體?最少要幾個小立方體?并畫出最多和最少時從左面看到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD的形外分別作等腰直角ABF和等腰直角ADE,FAB=EAD=90°,

連結(jié)AC、EF.在圖中找一個與FAE全等的三角形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)準備新建50個停車位,用以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位共需0.6萬元;新建3個地上停車位和2個地下停車位共需1.3萬元.

(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

(2)該小區(qū)的物業(yè)部門預計投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點P以每秒1個單位的速度從
A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都
停止運動,設(shè)點P、Q運動的時間為t秒.
(Ⅰ)在運動過程中,請你用t表示P、Q兩點間的距離,并求出P、Q兩點間的距離
的最大值;
(Ⅱ)經(jīng)過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,P,Q分別是BC,AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R,S,若AQ=PQ,PR=PS,則這四個結(jié)論中正確的有( )

①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°.分別以頂點A,B為圓心,大于AB的長為半徑作弧,兩弧在直線AB兩側(cè)分別交于M,N兩點,過M,N作直線交AB于點P,交AC于點D,連結(jié)BD.下列結(jié)論中,錯誤的是( )

A. 直線AB是線段MN的垂直平分線 B. CD=AD

C. BD平分∠ABC D. S△APD=S△BCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點,∠EPF=90°,給出四個結(jié)論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPFS△ABC.其中成立的有_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.

(1)若∠COE=20°,則∠BOD=   ;若∠COE=α,則∠BOD=   (用含α的代數(shù)式表示)

(2)當三角板繞O逆時針旋轉(zhuǎn)到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案