【題目】在△ABC中,DBC中點,BE、CF與射線AE分別相交于點EF(射線AE不經(jīng)過點D).

(1)如圖①,當(dāng)BECF時,連接ED并延長交CF于點H. 求證:四邊形BECH是平行四邊形;

(2)如圖②,當(dāng)BEAE于點E,CFAE于點F時,分別取AB、AC的中點M、N,連接ME、MD、NF、ND. 求證:∠EMD=∠FND.

圖① 圖②

【答案】(1)見解析;(2)見解析

【解析】

(1)根據(jù)ASA證明△BDE≌△CDH.得ED=HD.又BDCD,可得四邊形BECH是平行四邊形.

(2)連接FD、ED,延長EDCF于點H,根據(jù)(1)可知ED=HD.可得EDFD. 在Rt△AEB中,M是斜邊AB中點,故 ,同理.故ME=DN 同理,MD=NF. 由SSS證△MED≌△NDF.所以∠EMD=∠FND.

證明:(1)∵DBC中點,

BDCD.

BECF,

∴∠1=∠2.

又∵∠3=∠4,

∴△BDE≌△CDH.

ED=HD.

∴四邊形BECH是平行四邊形.

(2)連接FDED,延長EDCF于點H

BEAE,CFAE,

BECF.

根據(jù)(1)可知ED=HD.

又∵CFAE,

EDFD.

∵Rt△AEB中,M是斜邊AB中點,

,

∵△ABC中,D、N分別是BC、AC中點,

.

∴ME=DN

同理,MD=NF.

∴△MED≌△NDF.

∴∠EMD=∠FND.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 是反比例函數(shù),且圖象在第一,三象限,那么m的值是( 。
A.±1
B.1
C.-1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l上有一點O,點A,B同時從O出發(fā),在直線l上分別向左,向右作勻速運動,且A,B的速度之比是1:2,設(shè)運動時間為ts,

(1)當(dāng)t=2s時,AB=24cm,此時,

①在直線l上畫出A,B兩點運動2s時的位置,并回答點A運動的速度是   cm/s,點B的運動速度是   cm/s;

②若點P為直線l上一點,且PA=OP+PB,求 的值;

(2)在(1)的條件下,若A,B同時按原速度向左運動,再經(jīng)過幾秒,OA=3OB?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EF分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個頂點的坐標(biāo)分別為(1,2),(-2,3),(-1,0),把它們的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來的2倍,得到點 , , .下列說法正確的是( 。
A.△ 與△ABC是位似圖形,位似中心是點(1,0)
B.△ 與△ABC是位似圖形,位似中心是點(0,0)
C.△ 與△ABC是相似圖形,但不是位似圖形
D.△ 與△ABC不是相似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形,若學(xué)校位置坐標(biāo)為A1,2),解答以下問題:

1)請在圖中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);

2)若體育館位置坐標(biāo)為C(-3,3),請在坐標(biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2).

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)在y軸的負(fù)半軸上是否存在點M,使ABM是以AB為直角邊的直角角形?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點O在直線AB上,將一副直角三角板的直角頂點放在點O處,其中OCD=60°,∠OEF=45°.邊OC、OE在直線AB上.

(1)如圖(1),若CDEF相交于點G,則DGF的度數(shù)是______°;

(2)將圖(1)中的三角板OCD繞點O順時針旋轉(zhuǎn)30°至圖(2)位置

①若將三角板OEF繞點O順時針旋轉(zhuǎn)180°,在此過程中,當(dāng)COE=∠EOD=∠DOF時,求AOE的度數(shù);

②若將三角板OEF繞點O以每秒的速度順時針旋轉(zhuǎn)180°,與此同時,將三角板OCD繞點O以每秒的速度順時針旋轉(zhuǎn),當(dāng)三角板OEF旋轉(zhuǎn)到終點位置時,三角板OCD也停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時間為t秒,當(dāng)ODEF時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某產(chǎn)品的生產(chǎn)流水線每小時可生產(chǎn)100件產(chǎn)品,生產(chǎn)前沒有產(chǎn)品積壓,生產(chǎn)3h后安排工人裝箱,若每小時裝產(chǎn)品150件,未裝箱的產(chǎn)品數(shù)量(y)是時間(x)的函數(shù),那么這個函數(shù)的大致圖像只能是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案