【題目】已知二次函數(shù)y1=mx2﹣nx﹣m+n(m>0).
(Ⅰ)求證:該函數(shù)圖象與x軸必有交點(diǎn);
(Ⅱ)若m﹣n=3,
(ⅰ)當(dāng)﹣m≤x<1時,二次函數(shù)的最大值小于0,求m的取值范圍;
(ⅱ)點(diǎn)A(p,q)為函數(shù)y2=|mx2﹣nx﹣m+n|圖象上的動點(diǎn),當(dāng)﹣4<p<﹣1時,點(diǎn)A在直線y=﹣x+4的上方,求m的取值范圍.
【答案】(Ⅰ)見解析; (Ⅱ)(ⅰ);(ⅱ)或
【解析】
(Ⅰ)利用一元二次方程根的情況判斷拋物線與x軸的交點(diǎn)情況;
(Ⅱ)(。└鶕(jù)已知條件得到拋物線解析式為:=mx2﹣(m﹣3)x﹣3.由此求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)拋物線的增減性求得m的取值范圍;
(ⅱ)根據(jù)二次函數(shù)圖象與不等式間的轉(zhuǎn)化關(guān)系解答.
(Ⅰ)∵△=(﹣n)2﹣4m(﹣m+n)=(n﹣2m)2≥0,
∴該函數(shù)圖象與x軸必有交點(diǎn);
(Ⅱ)(ⅰ)∵m﹣n=3,
∴n=m﹣3.
∴
=mx2﹣(m﹣3)x﹣3.
當(dāng)y1=0時,mx2﹣(m﹣3)x﹣3=0,
解得x1=1,
∴二次函數(shù)圖象與x軸交點(diǎn)為(1,0)和( ,0)
∵當(dāng)﹣m≤x<1時,二次函數(shù)的最大值小于0,
∴
又∵m>0,
∴;
(ⅱ),m﹣n=3,
∴當(dāng)或x>1時,y2=mx2﹣(m﹣3)x﹣3,
當(dāng)時,y2=﹣mx2+(m﹣3)x+3.
∵當(dāng)﹣4<p<﹣1時,點(diǎn)A在直線y=﹣x+4上方,
∴當(dāng),即m>3時,有m×(﹣1)2﹣(m﹣3)×(﹣1)﹣3≥﹣(﹣1)+4,
解得.
當(dāng),即m時,有﹣m×(﹣1)2+(m﹣3)×(﹣1)+3≥﹣(﹣1)+4
且﹣m×(﹣4)2+(m﹣3)×(﹣4)+3≥﹣(﹣4)+4,
∴.
又∵m>0
∴.
綜上,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,E、F是⊙O上的點(diǎn),連接AE、AF、EF,BC是⊙O的切線,過點(diǎn)A作AD∥BC.
(1)如圖1,求證:∠DAF=∠AEF;
(2)如圖2,若AD=BC=AB,連接CD,延長AF交CD于G,連接CF,若FC=BC=4,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(2,﹣3)與C(0,﹣3),與x軸負(fù)半軸的交點(diǎn)為B.
(1)求拋物線的解析式與點(diǎn)B坐標(biāo);
(2)若點(diǎn)D在x軸上,使△ABD是等腰三角形,求所有滿足條件的點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,若以A、B、M、N為頂點(diǎn)的四邊形是平行四邊形,其中AB∥MN,請直接寫出所有滿足條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某活動小組為了估計裝有個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進(jìn)行摸球試驗(yàn),兩人一組,共組進(jìn)行摸球?qū)嶒?yàn).其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗(yàn),匯總起來后,摸到紅球次數(shù)為次.
估計從袋中任意摸出一個球,恰好是紅球的概率是多少?
請你估計袋中紅球接近多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC看,∠BAC=90°,AC=12,AB=10,D是AC上一個動點(diǎn),以AD為直徑的⊙O交BD于E,則線段CE的最小值是( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為一個封閉的圓形裝置,整個裝置內(nèi)部為A、B、C三個區(qū)域(A、B兩區(qū)域?yàn)閳A環(huán),C區(qū)域?yàn)樾A),具體數(shù)據(jù)如圖.
(1)求出A、B、C三個區(qū)域三個區(qū)域的面積:SA= ,SB= ,SC= ;
(2)隨機(jī)往裝置內(nèi)扔一粒豆子,多次重復(fù)試驗(yàn),豆子落在B區(qū)域的概率PB為多少?
(3)隨機(jī)往裝置內(nèi)扔180粒豆子,請問大約有多少粒豆子落在A區(qū)域?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家的“一帶一路”經(jīng)濟(jì)發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進(jìn)行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.
(1)抽查D廠家的零件為 件,扇形統(tǒng)計圖中D廠家對應(yīng)的圓心角為 ;
(2)抽查C廠家的合格零件為 件,并將圖1補(bǔ)充完整;
(3)通過計算說明合格率排在前兩名的是哪兩個廠家;
(4)若要從A、B、C、D四個廠家中,隨機(jī)抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
將一個多位自然數(shù)分解為個位與個位之前的數(shù),讓個位之前的數(shù)減去個位數(shù)的兩倍,若所得之差能被7整除,則原多位自然數(shù)一定能被7整除.也稱這個數(shù)為“要塞數(shù)”.例如:將數(shù)1078分解為8和107,107﹣8×2=91,因?yàn)?/span>91能被7整除,所以1078能被7整除,就稱1078為“要塞數(shù)”.
完成下列問題:
(1)若一個三位自然數(shù)是“要塞數(shù)”,且個位數(shù)字和百位數(shù)字都是7,則這個三位自然數(shù)位 ;
(2)若一個四位自然數(shù)M是“要塞數(shù)”,設(shè)M的個位數(shù)字為x,十位數(shù)字為y,且個位數(shù)字與百位數(shù)字的和為13,十位數(shù)字與千位數(shù)字的和也為13,記F(M)=|x﹣y|,求F(M)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com