【題目】(10分)某單位準備印制一批證書,現(xiàn)有兩個印刷廠可供選擇,甲廠費用分為制版費和印刷費兩部分先收取固定的制版費,再按印刷數(shù)量收取印刷費,乙廠直接按印刷數(shù)量收取印刷費.甲廠的總費用y1(干元)、乙廠的總費用y2(千元)與印制證書數(shù)量x(千個)的函數(shù)關(guān)系圖分別如圖中甲、乙所示.
(l)甲廠的制版費為____千元,印刷費為平均每個 元,甲廠的費用yl與證書數(shù)量x之間的函數(shù)關(guān)系式為 ,
(2)當(dāng)印制證書數(shù)量不超過2千個時,乙廠的印刷費為平均每個 元;
(3)當(dāng)印制證書數(shù)量超過2干個時,求乙廠的總費用y2與證書數(shù)量x之間的函數(shù)關(guān)系[式;
(4)若該單位需印制證書數(shù)量為8干個,該單位應(yīng)選擇哪個廠更節(jié)省費用?請說明理由.
【答案】(1)1;0.5;y=0.5x+1;
(2)1.5;
(3);
(4)由圖象可知,當(dāng)x=8時,y1>y2,因此該單位選擇乙廠更節(jié)省費用.
【解析】
試題分析:(1)由圖得制版費是1千元,通過坐標(biāo)(0,1)(2,2)求出函數(shù)解析式,印刷單價=(印刷費用-制版費)÷2000;
(2)由圖像可知,用3千元÷2千個,即可得到乙廠的平均印刷費;
(3)設(shè)y2=kx+b,由圖可知,當(dāng)x=6時y1與y2相交,利用(1)中求出的函數(shù)關(guān)系式可求出相應(yīng)的值,把這一點和(2,3)點代入設(shè)的解析式,即可求出相應(yīng)的函數(shù)關(guān)系式;
(4) 分別求出甲乙兩車的費用y關(guān)于證書個數(shù)x的函數(shù),將x=8分別代入兩個函數(shù)求值比較即可,可得出選擇乙廠節(jié)省.
試題解析:(10分)
(1)1;0.5;y=0.5x+1;
(2)1.5;
(3)設(shè)y2=kx+b,
由圖可知,當(dāng)x=6時,y2=y1=0.5×6+1=4,
所以函數(shù)圖象經(jīng)過點(2,3)和(6,4).
所以把(2,3)和(6,4)代入y2=kx+b,得,
解得,所以y2與x之間的函數(shù)關(guān)系式為.
(4)由圖象可知,當(dāng)x=8時,y1>y2,因此該單位選擇乙廠更節(jié)省費用.
(求出當(dāng)x=8時,y1和y2的值,用比較大小的方法得到結(jié)論也正確)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻EF最長可利用28米),圍成一個矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長的墻的材料.
(1)當(dāng)矩形的長BC為多少米時,矩形花園的面積為300平方米;
(2)能否圍成480平方米的矩形花園,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,(1)已知∠ABC,射線ED∥AB,過點E作∠DEF=∠ABC,試說明BC∥EF;
(2)如圖②,已知∠ABC,射線ED∥AB,∠ABC+∠DEF=180°.判斷直線BC與直線EF的位置關(guān)系,并說明理由;
(3)根據(jù)以上探究,你發(fā)現(xiàn)了一個什么結(jié)論?請你寫出來;
(4)如圖③,已知AC⊥BC,CD⊥AB,DE⊥AC,HF⊥AB,若∠1=48°,試求∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表所示為裝運、銷售甲、乙、丙三種蔬菜的重量及利潤。某公司計劃用20輛汽車裝運甲、乙、丙三種蔬菜共36噸到某地銷售.規(guī)定每輛汽車滿載,每車只裝一種蔬菜,每種蔬菜不少于一車。應(yīng)如何安排,可使公司獲得利潤18300元?
甲 | 乙 | 丙 | |
每輛汽車裝運的噸數(shù) | 2 | 1 | 1.5 |
每噸蔬菜可獲利潤(百元) | 5 | 7 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)求△AOB的面積;
(3)若D(x,0)是x軸上原點左側(cè)的一點,且滿足kx+b-<0,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個單位得到△A′B′C′.
(1)補全△A′B′C′,利用網(wǎng)格點和直尺畫圖;
(2)圖中AC與A1C1的關(guān)系是:______;
(3)畫出△ABC中AB邊上的中線CE;
(4)平移過程中,線段AC掃過的面積是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定個人發(fā)表文章、出版圖書獲得稿費的納稅計算方法是:(l)稿費不高于800元的不納稅;(2)稿費高于800元又不高于4000元的,減除其中的800元,其余部分按20%納稅:(3)稿費高于4000元,減除稿酬的20%,其余部分按20%納稅.今知丁老師獲得一筆稿費,并繳納個人所得稅600元,問:丁老師的這筆稿費有多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC為等邊三角形,P為BC上一點,Q為AC上一點,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則對下面四個結(jié)論判斷正確的是( )
①點P在∠BAC的平分線上, ②AS=AR, ③QP∥AR, ④△BRP≌△QSP.
A. 全部正確; B. 僅①和②正確; C. 僅②③正確; D. 僅①和③正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com