(2012•浦口區(qū)一模)如圖,在等腰梯形ABCD中,AE是梯形的高,將△ABE沿BC方向平移,使點(diǎn)A與點(diǎn)D重合,得△DFG.若∠B=60°,當(dāng)四邊形ABFD是菱形時(shí),
AB
BC
的值為
1
2
1
2
分析:當(dāng)四邊形ABFD是菱形時(shí),則有AB=BF;然后根據(jù)平移及等腰梯形的性質(zhì)找到AB=BF時(shí)AB與BC滿足的數(shù)量關(guān)系即可.
解答:解:當(dāng)四邊形ABFG是菱形時(shí),
AB
BC
=
1
2

∵在Rt△ABE中,∠B=60°,
根據(jù)平移的性質(zhì)可知:∠DFG=∠B=60°,AB=DF,
∴∠FDG=30°,
∴FG=
1
2
DF=
1
2
AB,(直角三角形中30°所對(duì)直角邊等于斜邊的一半)
根據(jù)等腰梯形的性質(zhì)可知:∠C=∠B=60°,AB=CD,
同理可得:CG=
1
2
CD=
1
2
AB,
∵四邊形ABFD是菱形,
∴AB=BF,
∴BC=BF+FG+GC=2AB,
AB
BC
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查等腰梯形、菱形及平移的性質(zhì),解題關(guān)鍵是對(duì)這些性質(zhì)的熟練掌握并靈活運(yùn)用,同時(shí)要掌握直角三角形中30°所對(duì)直角邊等于斜邊的一半,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦口區(qū)一模)如圖,數(shù)軸上的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c,AB=BC,如果|a|>|c|>|b|,那么該數(shù)軸的原點(diǎn)O的位置應(yīng)該在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦口區(qū)一模)在直角三角形中,如果已知2個(gè)元素(其中至少有一個(gè)是邊),那么就可以求出其余的3個(gè)未知元素.對(duì)于任意三角形,我們需要知道幾個(gè)元素就可以求出其余的未知元素呢?思考并解答下列問(wèn)題:
(1)觀察下列4幅圖,根據(jù)圖中已知元素,可以求出其余未知元素的三角形是
②、③
②、③


(2)如圖,在△ABC中,已知∠B=40°,BC=12,AB=10,能否求出AC?如果能,請(qǐng)求出AC的長(zhǎng)度(答案保留根號(hào));如果不能,還需要增加哪個(gè)條件?(參考數(shù)據(jù):sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦口區(qū)一模)一輛貨車從A地出發(fā)以每小時(shí)100km的速度勻速駛往B地,一段時(shí)間后,一輛轎車從B地出發(fā)沿同一條路勻速駛往A地.貨車行駛1.8小時(shí)后,在距B地120km處與轎車相遇.圖中線段表示貨車離B地的距離y1與所用時(shí)間x的關(guān)系.根據(jù)函數(shù)圖象探究:
(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若兩車同時(shí)到達(dá)各自目的地,在同一坐標(biāo)系中畫(huà)出轎車離B地的距離y2與所用時(shí)間x的關(guān)系的圖象,用文字說(shuō)明該圖象與x軸交點(diǎn)所表示的實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦口區(qū)一模)提出問(wèn)題:
如圖,在△ABC中,∠A=90°,分別以邊AB、AC向外作正方形ABDE和正方形ACFG,連接EG,小亮發(fā)現(xiàn)△ABC與△AEG面積相等.小亮思考:這個(gè)問(wèn)題中,如果∠A≠90°,那么△ABC與△AEG面積是否仍然相等?
猜想結(jié)論:
經(jīng)過(guò)研究,小亮認(rèn)為:上述問(wèn)題中,對(duì)于任意△ABC,分別以邊AB、AC向外作正方形ABDE 和正方形 ACFG,連接EG,那么△ABC與△AEG面積相等.
證明猜想:
(1)請(qǐng)你幫助小亮畫(huà)出圖形,并完成證明過(guò)程.已知:以△ABC的兩邊AB、AC為邊長(zhǎng)分別向外作正方形ABDE、ACFG,連接GE.求證:S△AEG=S△ABC
結(jié)論應(yīng)用:
(2)學(xué)校教學(xué)樓前的一個(gè)六邊形花圃被分成七個(gè)部分,分別種上不同品種的花卉,其中四邊形ABCD、CIHG、GFED均為正方形,且面積分別為9m2、5m2和4m2.求這個(gè)六邊形花圃ABIHFE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案