(2006•資陽(yáng))如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l1關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說明理由.
注:計(jì)算結(jié)果不取近似值.

【答案】分析:(1)根據(jù)l1的解析式可求l1與x軸的交點(diǎn)為A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,-4),l2與l1關(guān)于x軸對(duì)稱,實(shí)際上是l2與l1的頂點(diǎn)關(guān)于x軸對(duì)稱,即l2的頂點(diǎn)為(0,4),設(shè)頂點(diǎn)式,可求拋物線l2的解析式;
(2)平行四邊形是中心對(duì)稱圖形,A、C關(guān)于原點(diǎn)對(duì)稱,則B、D也關(guān)于原點(diǎn)對(duì)稱,設(shè)點(diǎn)B(m,n),則點(diǎn)D(-m,-n),由于B(m,n)點(diǎn)是y=x2-4上任意一點(diǎn),則n=m2-4,∴-n=-(m2-4)=-m2+4=-(-m)2+4,可知點(diǎn)D(-m,-n)在l2y=-x2+4的圖象上;
(3)構(gòu)造∠ABC=90°是關(guān)鍵,連接OB,只要證明OB=OC即可,為求OB長(zhǎng),過點(diǎn)B作BH⊥x軸于H,用B的坐標(biāo)為(x,x2-4),可求OB,用OB=OC求x,再計(jì)算面積.
解答:解:(1)設(shè)l2的解析式為y=ax2+bx+c(a≠0),
∵l1與x軸的交點(diǎn)為A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,-4),l2與l1關(guān)于x軸對(duì)稱,
∴l(xiāng)2過A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,4),(1分)
(2分)
∴a=-1,b=0,c=4,
即l2的解析式為y=-x2+4.(3分)
(還可利用頂點(diǎn)式、對(duì)稱性關(guān)系等方法解答)

(2)設(shè)點(diǎn)B(m,n)為l1:y=x2-4上任意一點(diǎn),則n=m2-4,(*)
∵四邊形ABCD′是平行四邊形,點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱,
∴B、D′關(guān)于原點(diǎn)O對(duì)稱,(4分)
∴點(diǎn)D′的坐標(biāo)為D′(-m,-n).
由式方程式可知,-n=-(m2-4)=-(-m)2+4,
即點(diǎn)D′的坐標(biāo)滿足y=-x2+4,又D與D′關(guān)于y軸對(duì)稱,
∴點(diǎn)D在l2上.(5分)

(3)?ABCD能為矩形.(6分)
過點(diǎn)B作BH⊥x軸于H,由點(diǎn)B在l1:y=x2-4上,可設(shè)點(diǎn)B的坐標(biāo)為(x,x2-4),
則OH=|x|,BH=|x2-4|.
易知,當(dāng)且僅當(dāng)BO=AO=2時(shí),?ABCD為矩形.
在Rt△OBH中,由勾股定理得,|x|2+|x2-4|2=22,
(x2-4)(x2-3)=0,
∴x=±2(舍去)、x.(7分)
所以,當(dāng)點(diǎn)B坐標(biāo)為B(,-1)或B′(-,-1)時(shí),?ABCD為矩形,
此時(shí),點(diǎn)D的坐標(biāo)分別是D(-,1)、D′(,1).
因此,符合條件的矩形有且只有2個(gè),即矩形ABCD和矩形AB′CD′.(8分)
設(shè)直線AB與y軸交于E,顯然,△AOE∽△AHB,
=,

∴EO=4-2.(9分)
由該圖形的對(duì)稱性知矩形ABCD與矩形AB′CD′重合部分是菱形,其面積為
S=2S△ACE=2××AC×EO=2××4×(4-2)=16-8.(10分)
(還可求出直線AB與y軸交點(diǎn)E的坐標(biāo)解答)
點(diǎn)評(píng):本題是一道函數(shù)型綜合題,涉及二次函數(shù)、相似形、四邊形等知識(shí),三個(gè)小題的坡度設(shè)計(jì)很恰當(dāng),能較好地體現(xiàn)出試題的區(qū)分度,對(duì)第2題的證明過程要仔細(xì)領(lǐng)悟.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•資陽(yáng))如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l1關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說明理由.
注:計(jì)算結(jié)果不取近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市中考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

(2006•資陽(yáng))如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l1關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說明理由.
注:計(jì)算結(jié)果不取近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河南省鄭州市四中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2006•資陽(yáng))如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l1關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說明理由.
注:計(jì)算結(jié)果不取近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•資陽(yáng))如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l1關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說明理由.
注:計(jì)算結(jié)果不取近似值.

查看答案和解析>>

同步練習(xí)冊(cè)答案