已知:E是△ABC一邊BA延長(zhǎng)線上一點(diǎn),且AE=BC,過(guò)點(diǎn)A作AD∥BC,且使AD=AB,連接ED.求證:AC=DE.

【答案】分析:根據(jù)平行線的性質(zhì)得出∠EAD=∠B,根據(jù)SAS證△ABC≌△DAE,再根據(jù)全等三角形的性質(zhì)推出即可.
解答:證明:∵AD∥BC,
∴∠EAD=∠B,
∵在△ABC和△DAE中
,
∴△ABC≌△DAE(SAS),
∴AC=DE.
點(diǎn)評(píng):本題考查了平行線的性質(zhì)和全等三角形的性質(zhì)和判定,關(guān)鍵是推出△ABC≌△DAE,題目比較好,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,已知:AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底等高的三角形面積相等

規(guī)定;若一條直線l把一個(gè)圖形分成面積相等的兩個(gè)圖形,則稱這樣的直線l叫做這個(gè)圖形的等積直線.根據(jù)此定義,在圖1中易知直線為△ABC的等積直線.
(1)如圖2,在矩形ABCD中,直線l經(jīng)過(guò)AD,BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該矩形的等積直線
(填“是”或“否”).在圖2中再畫(huà)出一條該矩形的等積直線.(不必寫(xiě)作法)
(2)如圖3,在梯形ABCD中,直線l經(jīng)過(guò)上下底AD、BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該梯形的等積直線
(填“是”或“否”).
(3)在圖3中,過(guò)M、N的中點(diǎn)O任作一條直線PQ分別交AD,BC于點(diǎn)P、Q,如圖4所示,猜想PQ是否為該梯形的等積直線?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,已知點(diǎn)D是△ABC中BC邊上的一點(diǎn),線段AD將△ABC分為面積相等的兩部分,則線段AD是△ABC的一條( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)寧區(qū)一模)已知點(diǎn)G是△ABC的重心,若S△ABC=k•S△GBC,則k=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)O是△ABC內(nèi)一點(diǎn),且點(diǎn)O到△ABC三邊的距離相等,則點(diǎn)O是△ABC( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一數(shù)學(xué)研究小組探究了以下相關(guān)的兩個(gè)問(wèn)題,請(qǐng)你也試試.
(1)如圖1,已知△ABC,BO、CO分別是∠ABC、∠ACB的平分線.試探究∠A與∠BOC的度數(shù)之間的關(guān)系.
(2)如圖2,已知點(diǎn)O是△ABC內(nèi)切圓的圓心,點(diǎn)O′是△ABC外接圓的圓心.試探究∠BOC與∠BO′C的度數(shù)之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案