(2010•成都)已知:如圖,AB與⊙O相切于點(diǎn)C,OA=OB,⊙O的直徑為4,AB=8.
(1)求OB的長(zhǎng);
(2)求sinA的值.

【答案】分析:(1)先由OA=OB可知△OAB是等腰三角形,再根據(jù)切線(xiàn)的性質(zhì)可知OC⊥AB,故可求出BC的長(zhǎng),再利用勾股定理求出OB的長(zhǎng)即可.
(2)根據(jù)OA=OB求出OA的長(zhǎng),再根據(jù)角的三角函數(shù)值求出sinA的值即可.
解答:解:(1)由已知,OC=2,BC=4.
在Rt△OBC中,由勾股定理,得


(2)在Rt△OAC中,
∵OA=OB=,OC=2,
∴sinA=
點(diǎn)評(píng):本題綜合考查了切線(xiàn)的性質(zhì)及直角三角形的性質(zhì)、銳角三角函數(shù)的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•成都)已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,弦CE⊥AB于F,C是的中點(diǎn),連接BD并延長(zhǎng)交EC的延長(zhǎng)線(xiàn)于點(diǎn)G,連接AD,分別交CE、BC于點(diǎn)P、Q.
(1)求證:P是△ACQ的外心;
(2)若,求CQ的長(zhǎng);
(3)求證:(FP+PQ)2=FP•FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2010•成都)已知:在菱形ABCD中,O是對(duì)角線(xiàn)BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線(xiàn)段BC上一點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長(zhǎng),與DC交于點(diǎn)R,與BC的延長(zhǎng)線(xiàn)交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•成都)已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,弦CE⊥AB于F,C是的中點(diǎn),連接BD并延長(zhǎng)交EC的延長(zhǎng)線(xiàn)于點(diǎn)G,連接AD,分別交CE、BC于點(diǎn)P、Q.
(1)求證:P是△ACQ的外心;
(2)若,求CQ的長(zhǎng);
(3)求證:(FP+PQ)2=FP•FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•成都)已知:在菱形ABCD中,O是對(duì)角線(xiàn)BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線(xiàn)段BC上一點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長(zhǎng),與DC交于點(diǎn)R,與BC的延長(zhǎng)線(xiàn)交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案