【題目】如圖,把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個正方形,如果所剪得的兩個正方形邊長都是1,那么圓形紙片和扇形紙片的面積比是( )
A.4:5B.2:5C.:2D.:
科目:初中數學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則圖中陰影部分的面積是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知函數(x>0)的圖象經過點A,B,點A的坐標為(1,2).過點A作AC∥y軸,AC=1(點C位于點A的下方),過點C作CD∥x軸,與函數的圖象交于點D,過點B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當BE=AC時,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點,則y1<y2, 其中結論正確的是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,將AC繞著點A順時針旋轉60°得AE,連接BE,CE.
(1)求證:△ADC≌△ABE;
(2)求證:
(3)若AB=2,點Q在四邊形ABCD內部運動,且滿足,直接寫出點Q運動路徑的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學問題:如何計算平面直角坐標系中任意兩點之間的距離?
探究問題:
為解決上面的問題,我們從最簡單的問題進行研究.
探究一:在圖1中,已知線段AB,A(﹣2,0),B(0,3),寫出線段AO的長,BO的長,所以線段AB的長為多少;把Rt△AOB向右平移3個單位,再向上平移2個單位,得到Rt△CDE,寫出Rt△CDE的頂點坐標C,D,E,此時線段CD的長為多少,DE的長為多少,所以線段CE的長為多少.
探究二:在圖2中,已知線段AB的端點坐標為A(a,b),B(c,d),求出圖中AB的長(用含a,b,c,d的代數式表示,不必證明).
歸納總結:無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為A(x1,y1),B(x2,y2)時線段AB的長為多少(用含x1,y1,x2,y2的代數式表示,不必證明).
拓展與應用:
運用在圖3中,一次函數y=﹣x+3與反比例函數y=的圖象交點為A、B,交點的坐標分別是A(1,2),B(2,1).
①求線段AB的長;
②若點P是x軸上動點,求PA+PB的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x﹣1與拋物線y=﹣x2+6x﹣5相交于A、D兩點.拋物線的頂點為C,連結AC.
(1)求A,D兩點的坐標;
(2)點P為該拋物線上一動點(與點A、D不重合),連接PA、PD.
①當點P的橫坐標為2時,求△PAD的面積;
②當∠PDA=∠CAD時,直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com