【題目】如圖,拋物線x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)AC,現(xiàn)有一寬度為1,且長與y軸平行的矩形沿x軸方向平移,交直線AC于點(diǎn)DE,△ODE周長的最小值為( 。

A.B.C.D.

【答案】A

【解析】

作正方形AOCM,連接OM、作MNAC,使得MN=DE,連接ONACE,此時(shí)OD+OE的值最小.

解:如圖,

當(dāng)時(shí),

解之得

x1=-3,x2=1,

A-3,0),B10),

∵OA=OC=3,作正方形AOCM,連接OM、作MN∥AC,使得MN=DE,連接ONACE,此時(shí)OD+OE的值最。

∵M(jìn)N=DE,MN∥DE,

四邊形MNED是平行四邊形,

∴DM=EN

∴△ODE的周長=OD+DE+EO=DM+DE+OE=NE+OE+DE=ON+DE

∵AC⊥OM,

∴MN⊥OM,

∴∠NMO=90°,

∵M(jìn)N=DE=,OM=3,

∴ON=,

∴△ODE的周長的最小值為,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax+22-3y2=x-32+1交于點(diǎn)A13),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:①無論x取何值,y2的值總是正數(shù);②a=1;③當(dāng)x=0時(shí),y2-y1=4;④2AB=3AC;其中正確結(jié)論是( 。

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)OAB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC、AB于點(diǎn)E. F

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)BD=2,BF=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式。

1)根據(jù)圖象,階梯電價(jià)方案分為三個檔次,填寫下表:

2)求每月用電量為100度時(shí)所需交的電費(fèi):

3)第二檔每用電費(fèi)y(元)與用電量(度)間的函數(shù)關(guān)系式;

4)在每月用電量超過230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電310度,交電費(fèi)168元,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A1,4),B4,n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當(dāng)x0時(shí),的解集.

3)點(diǎn)Px軸上的一動點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸的一個交點(diǎn)為,與軸的交點(diǎn)在點(diǎn)與點(diǎn)之間(包含端點(diǎn)),頂點(diǎn)的坐標(biāo)為。則下列結(jié)論:①;②;③對于任意實(shí)數(shù)總成立;④關(guān)于的方程沒有實(shí)數(shù)根。其中結(jié)論正確的個數(shù)為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為項(xiàng)點(diǎn)作等腰直角三角形,使,連接,射線于點(diǎn).

1 2

1)如圖1,若點(diǎn)、、在一條直線上,

①求證:;

②若,,求的長;

2)如圖2,若,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中射線交于點(diǎn),當(dāng)三角形是直角三角形時(shí),請你直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩座建筑物的水平距離BC30m,從甲的頂部A處測得乙的頂部D處的俯角為35°測得底部C處的俯角為43°,求甲、乙兩建筑物的高度ABDC(結(jié)果取整數(shù)).

(參考數(shù)據(jù):tan35°≈0.70,tan43°≈0.93

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x8分別交x軸、y軸于點(diǎn)A、點(diǎn)B,拋物線yax2+bxa0)經(jīng)過點(diǎn)A,且頂點(diǎn)Q在直線AB上.

1)求a,b的值.

2)點(diǎn)P是第四象限內(nèi)拋物線上的點(diǎn),連結(jié)OP、AP、BP,設(shè)點(diǎn)P的橫坐標(biāo)為t,△OAP的面積為s1,△OBP的面積為s2,記ss1+s2,試求s的最值.

查看答案和解析>>

同步練習(xí)冊答案