精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經過B,C兩點,已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】
(1)解:∵C(0,3),即OC=3,BC=5,

∴在Rt△BOC中,根據勾股定理得:OB= =4,即B(4,0),

把B與C坐標代入y=kx+n中,得:

解得:k=﹣ ,n=3,

∴直線BC解析式為y=﹣ x+3;

由A(1,0),B(4,0),設拋物線解析式為y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,

把C(0,3)代入得:a=

則拋物線解析式為y= x2 x+3


(2)解:存在.

如圖所示,分兩種情況考慮:

∵拋物線解析式為y= x2 x+3,

∴其對稱軸x=﹣ =﹣ =

當P1C⊥CB時,△P1BC為直角三角形,

∵直線BC的斜率為﹣

∴直線P1C斜率為 ,

∴直線P1C解析式為y﹣3= x,即y= x+3,

與拋物線對稱軸方程聯立得 ,

解得: ,

此時P( , );

當P2B⊥BC時,△BCP2為直角三角形,

同理得到直線P2B的斜率為 ,

∴直線P2B方程為y= (x﹣4)= x﹣ ,

與拋物線對稱軸方程聯立得: ,

解得: ,

此時P2 ,﹣2).

綜上所示,P1 , )或P2 ,﹣2).

當點P為直角頂點時,設P( ,y),

∵B(4,0),C(0,3),

∴BC=5,

∴BC2=PC2+PB2,即25=( 2+(y﹣3)2+( ﹣4)2+y2,解得y= ,

∴P3 , ),P4 , ).

綜上所述,P1 , ),P2 ,﹣2),P3 , ),P4 , ).


【解析】(1)利用勾股定理求出B坐標,再把A、C坐標代入解析式即可;(2)“以B,C,P三點為頂點的三角形是直角三角形”須分類討論:點P為直角頂點;點C為直角頂點;點B為直角頂點;分別過C、B作垂線與對稱軸相交,當P為直角頂點時,可利用勾股定理列方程.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,AB均在邊長為1的正方形網格格點上.

1)求線段AB所在直線的函數解析式,并寫出當0≤y≤2時,自變量x的取值范圍

2)將線段AB繞點A逆時針旋轉90°,得到線段AC,請在網格中畫出線段AC

3)若直線AC的函數解析式為ykx+b,則yx的增大而   (填增大減小).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB,CD交于點OOB平分∠DOE,OF是∠BOC的角平分線.

(1)說明:∠AOC=∠BOE;

(2)若∠AOC46°,求∠EOF的度數;

(3)若∠EOF30°,求∠AOC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,半徑OA⊥OB,過點OA的中點C作FD∥OB交⊙O于D、F兩點,且CD= ,以O為圓心,OC為半徑作 ,交OB于E點.

(1)求⊙O的半徑OA的長;
(2)計算陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為米、寬為米的長方形地塊該長方形地塊。該長方形地塊正中間是一個長為米的長方形,四個角是大小相同的正方形,該小區(qū)計劃

將如圖陰影部分進行綠化,對四個角的四個正方形采用A綠化方案,對正中間的長方形采用B綠化方案.

(1)采用A綠化方案的每個正方形邊長是多少米,采用B綠化方案的長方形另一邊長是多少米(用含的代數式表示);

(2)若采用A、B兩種綠化方案的總造價相同,均為2700,請你判斷哪種方案單位面積造價高?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A2,3),點B﹣2,1),在x軸上存在點PA,B兩點的距離之和最小,則P點的坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=x+1與x軸交于點A,與y軸交于點B,△BOC與△B′O′C′是以點A為位似中心的位似圖形,且相似比為1:3,則點B的對應點B′的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2﹣bx+0.5b﹣a與x軸交于A、B兩點,則線段AB的最小值為( )
A.0.5
B.2
C.
D.無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,一次函數y=kx+b(k,b都是常數,且k0)的圖象經過點(1,0)和(0,2).

(1)當﹣2x3時,求y的取值范圍;

(2)已知點P(m,n)在該函數的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

同步練習冊答案