如圖,已知E是正方形ABCD的邊CD的中點,點F在邊CD上,且∠BAE=∠FAE,
求證:AF=AD+CF.
分析:過E點作EG⊥AF,垂足為G,根據(jù)題干條件首先證明△ABE≌△AGE,即可得AG=AB,同理證明出CF=GF,于是結(jié)論可以證明.
解答:證明:過E點作EG⊥AF,垂足為G,
∵∠BAE=∠EAF,∠B=∠AGE=90°,
又∵∠BAE=∠EAF,即AE為角平分線,EB⊥AB,EG⊥AG,
∴BE=EG,
在Rt△ABE和Rt△AGE中,
BE=EG
AE=AE
,
∴Rt△ABE≌Rt△AGE(HL),
∴AG=AB,
同理可知CF=GF,
∴AF=BC+FC=AD+CF.
點評:本題主要考查正方形的性質(zhì)和全等三角形的判定與性質(zhì)的知識點,解答本題的關(guān)鍵是熟練掌握正方形的性質(zhì),此題難度不大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

15、如圖,已知P是正方形ABCD內(nèi)一點,要使△APD≌△BPC,只需增加的一個條件是
PA=PB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3,以點B為旋轉(zhuǎn)中心,將△ABP沿順時針方向旋轉(zhuǎn),使點A與點C重合,這時P點旋轉(zhuǎn)到G點.
(1)請畫出旋轉(zhuǎn)后的圖形,并說明此時△ABP以點B為旋轉(zhuǎn)中心旋轉(zhuǎn)了多少度?
(2)求出PG的長度;
(3)請你猜想△PGC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知ABCD是正方形,以CD為一邊向CD兩旁作等邊三角形PCD和等邊三角形QCD,那么tan∠PQB的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知P是正方形ABCD內(nèi)一點,△PBC是等邊三角形,若△PAD的外接圓半徑為a,則正方形ABCD邊長為(
A、
1
2
B、
3
2
a
C、a
D、
2
a

查看答案和解析>>

同步練習冊答案