【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B.

(1)求拋物線的解析式; (2)畫出拋物線的圖象.

【答案】(1) y=﹣x2+2x+3 ;(2)見解析.

【解析】

1)先求得點(diǎn)A和點(diǎn)B的坐標(biāo),然后將點(diǎn)A和點(diǎn)B的坐標(biāo)代入拋物線的解析式求得b,c的值即可;

(2)依據(jù)拋物線解析式為y=﹣x2+bx+c,列表,描點(diǎn),連線即可.

解:(1)將x=0代入AB的解析式y=﹣x+3得:y=3, B(0,3).

y=0代入AB的解析式y=﹣x+3得:﹣x+3=0,

解得x=3, A(3,0).

將點(diǎn)A和點(diǎn)B的坐標(biāo)代入y=﹣x2+bx+c,

解得:b=2,c=3.

∴拋物線的解析式為y=﹣x2+2x+3.

(2)列表:

拋物線的圖象如下:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,,點(diǎn)內(nèi)一點(diǎn),,分別是點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接,分別交、.如果的周長(zhǎng)為,的度數(shù)為,請(qǐng)根據(jù)以上信息完成作圖,并指出的值( )

A.,B.C.,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖,在RtABC中,∠ACB=90°BAC=30°.

動(dòng)手操作:(1)若以直角邊AC所在的直線為對(duì)稱軸.將RtABC作軸對(duì)稱變換,請(qǐng)你在原圖上作出它的對(duì)稱圖形:

觀察發(fā)現(xiàn):(2)RtABC和它的對(duì)稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是   

合作交流:(3)根據(jù)上面的圖形,請(qǐng)你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為地鐵調(diào)價(jià)后的計(jì)價(jià)表.調(diào)價(jià)后小明、小偉從家到學(xué)校乘地鐵分別需要4元和3元.由于刷卡坐地鐵有優(yōu)惠,因此,他們平均每次實(shí)付3.6元和2.9元.已知小明從家到學(xué)校乘地鐵的里程比小偉從家到學(xué)校的里程多5 km,且小明每千米享受的優(yōu)惠金額是小偉的2,求小明和小偉從家到學(xué)校乘地鐵的里程分別是多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知OC平分∠AOB,點(diǎn)POC上一點(diǎn),PDOAD,且PD=3cm,過點(diǎn)PPEOAOBE,∠AOB=30°,求PE的長(zhǎng)度_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC外接圓O上的點(diǎn),在以下判斷中,不正確的是

A、當(dāng)弦PB最長(zhǎng)時(shí),ΔAPC是等腰三角形 B、當(dāng)ΔAPC是等腰三角形時(shí),POAC

C、當(dāng)POAC時(shí),ACP=300 D、當(dāng)ACP=300時(shí),ΔPBC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BECDE,交直線ACF.

(1)點(diǎn)D在邊AB上時(shí),請(qǐng)證明:BD=AB﹣AF;

(2)試探索:點(diǎn)DAB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),請(qǐng)?jiān)趥溆脠D中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫出正確結(jié)論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC ,點(diǎn)E是邊AD的中點(diǎn),連接BEACF,BE的延長(zhǎng)線交CD的延長(zhǎng)線于G.

(1)求證:;

(2)若GE=2,BF=3,求線段EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案