解:(1)如圖,BM、NC、MN之間的數(shù)量關(guān)系BM+NC=MN.
此時(shí)
.
(2)猜想:結(jié)論仍然成立.
證明:如圖,延長(zhǎng)AC至E,使CE=BM,連接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又△ABC是等邊三角形,
∴∠MBD=∠NCD=90°.
在△MBD與△ECD中:
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC-∠MDN=60°.
在△MDN與△EDN中:
,
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周長(zhǎng)Q=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等邊△ABC的周長(zhǎng)L=3AB.
∴
.
(3)如圖,當(dāng)M、N分別在AB、CA的延長(zhǎng)線上時(shí),若AN=x,
則Q=2x+
(用x、L表示).
分析:(1)如果DM=DN,∠DMN=∠DNM,因?yàn)锽D=DC,那么∠DBC=∠DCB=30°,也就有∠MBD=∠NCD=60+30=90°,直角三角形MBD、NCD中,因?yàn)锽D=CD,DM=DN,根據(jù)HL定理,兩三角形全等.那么BM=NC,∠BMD=∠DNC=60°,三角形NCD中,∠NDC=30°,DN=2NC,在三角形DNM中,DM=DN,∠MDN=60°,因此三角形DMN是個(gè)等邊三角形,因此MN=DN=2NC=NC+BM,三角形AMN的周長(zhǎng)Q=AM+AN+MN=AM+AN+MB+NC=AB+AC=2AB,三角形ABC的周長(zhǎng)L=3AB,因此Q:L=2:3.
(2)如果DM≠DN,我們可通過(guò)構(gòu)建全等三角形來(lái)實(shí)現(xiàn)線段的轉(zhuǎn)換.延長(zhǎng)AC至E,使CE=BM,連接DE.(1)中我們已經(jīng)得出,∠MBD=∠NCD=90°,那么三角形MBD和ECD中,有了一組直角,MB=CE,BD=DC,因此兩三角形全等,那么DM=DE,∠BDM=∠CDE,∠EDN=∠BDC-∠MDN=60°.三角形MDN和EDN中,有DM=DE,∠EDN=∠MDN=60°,有一條公共邊,因此兩三角形全等,MN=NE,至此我們把BM轉(zhuǎn)換成了CE,把MN轉(zhuǎn)換成了NE,因?yàn)镹E=CN+CE,因此NM=BM+CN.Q與L的關(guān)系的求法同(1),得出的結(jié)果是一樣的.
(3)我們可通過(guò)構(gòu)建全等三角形來(lái)實(shí)現(xiàn)線段的轉(zhuǎn)換,思路同(2)過(guò)D作∠CDH=∠MDB,三角形BDM和CDH中,由(1)中已經(jīng)得出的∠DCH=∠MBD=90°,我們做的角∠BDM=∠CDH,BD=CD因此兩三角形全等(ASA).那么BM=CH,DM=DH,三角形MDN和NDH中,已知的條件有MD=DH,一條公共邊ND,要想證得兩三角形全等就需要知道∠MDN=∠HDN,因?yàn)椤螩DH=∠MDB,因此∠MDH=∠BDC=120°,因?yàn)椤螹DN=60°,那么∠NDH=120°-60°=60°,因此∠MDN=∠NDH,這樣就構(gòu)成了兩三角形全等的條件.三角形MDN和DNH就全等了.那么NM=NH=AN+AC-BM,三角形AMN的周長(zhǎng)Q=AN+AM+MN=AN+AB+BM+AN+AC-BM=2AN+2AB.因?yàn)锳N=x,AB=
L,因此三角形AMN的周長(zhǎng)Q=2x+
L.
點(diǎn)評(píng):本題考查了三角形全等的判定及性質(zhì);題目中線段的轉(zhuǎn)換都是根據(jù)全等三角形來(lái)實(shí)現(xiàn)的,當(dāng)題中沒(méi)有明顯的全等三角形時(shí),我們要根據(jù)條件通過(guò)作輔助線來(lái)構(gòu)建于已知和所求條件相關(guān)的全等三角形.