【題目】根據(jù)下列各組條件,△ABC與△A1B1C1相似的有( )
①∠A=45°,AB=12,AC=15,∠A1=45°,A1B1=16,A1C1=20
②AB=12,BC=15,AC=24,A1B1=20,A1C1=40,B1C1=25
③∠B=∠B1=75°,∠C=50°,∠A1=55°
④∠C=∠C1=90°,AB=10,AC=6,A1B1=15,A1C1=9
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
本題主要利用相似三角形的判定方法進行解答,
①如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似;
②如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似;
③如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似.
解:①符合兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個三角形相似,故選項正確;
②符合三組對應(yīng)邊的比相等的三個三角形相似,故選項正確;
③符合有兩組角對應(yīng)相等的兩個三角形相似,故選項正確;
④利用勾股定理可求BC=8,B1C1=12,因此三條對應(yīng)邊的比都是,故選項正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求點A的坐標;
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標;
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是( )
A. ∠ACD=∠DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),B(﹣4,0).
(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C,求△BMC面積的最大值;
(3)在(2)中△BMC面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校初中各年級學生每天的平均睡眠時間(單位:h,精確到1h),抽樣調(diào)查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)a的值為 ,所抽查的學生人數(shù)為 .
(2)求出平均睡眠時間為8小時的人數(shù),并補全頻數(shù)直方圖.
(3)求出這部分學生的平均睡眠時間的眾數(shù)和平均數(shù).
(4)如果該校共有學生1200名,請你估計睡眠不足(少于8小時)的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)以下列正方形網(wǎng)絡(luò)的交點為頂點,分別畫出兩個相似比不為1的相似三角形,使它們:①都是直角三角形;②都是銳角三角形;③都是鈍角三角形.
(2)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,﹣1)、(2,1).
①以0點為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
②分別寫出B、C兩點的對應(yīng)點B′、C′的坐標;
③如果△OBC內(nèi)部一點M的坐標為(x,y),寫出M的對應(yīng)點M′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,,cm,動點以2cm/s的速度在的邊上沿的方向勻速運動,動點在的邊上沿的方向勻速運動,、兩點同時出發(fā),5s后,點到達終點,點立即停止運動(此時點尚未到達點).設(shè)點運動的時間為(s),的面積為(cm2),與的函數(shù)圖像如圖②所示.
(1)圖①中 cm,點運動的速度為 cm/s;
(2)求函數(shù)的最大值;
(3)當為何值時,以、、為頂點的三角形與相似?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角三角形ABC,∠ACB=90°,D是斜邊AB的中點,且AC=BC=16分米,以點B為圓心,BD為半徑畫弧,交BC于點F,以點C為圓心,CD為半徑畫弧,分別交AB、BC于點E、G.求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=3x2+36x+81.
(1)寫出它的頂點坐標;
(2)當x取何值時,y隨x的增大而增大;
(3)求出圖象與x軸的交點坐標;
(4)當x取何值時,y有最小值,并求出最小值;
(5)當x取何值時,y<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com