【題目】如圖,在等腰△ABC中,點(diǎn)D、E分別是兩腰AC、BC上的點(diǎn),連接AE、BD相交于點(diǎn)O,∠1=∠2.
(1)求證:OD=OE;
(2)求證:四邊形ABED是等腰梯形;
(3)若AB=3DE,△DCE的面積為2,求四邊形ABED的面積.

【答案】
(1)證明:如圖,∵△ABC是等腰三角形,

∴AC=BC,

∴∠BAD=∠ABE,

又∵AB=BA、∠2=∠1,

∴△ABD≌△BAE(ASA),

∴BD=AE,

又∵∠1=∠2,

∴OA=OB,

∴BD﹣OB=AE﹣OA,

即:OD=OE


(2)證明:由①得OD=OE,

∴∠DOE=∠BOA,

,

∴△DOE∽△BOA,

∴∠EDO=∠ABO,

∴DE∥AB,

又∵∠DAB=∠EBA,

∴四邊形ABEO為等腰梯形


(3)解:由(2)可知:DE∥AB,

∴∠CED=∠CBA,∠CDE=∠CAB,

∴△DCE∽△ACB(AA),

=( 2,

=( 2=

∴SACB=18,

∴S四邊形ABED=SACB﹣SDCE=18﹣2=16


【解析】(1)如圖,由△ABC是等腰三角形,得到∠BAD=∠ABE,然后利用已知條件證明△ABD≌△BAE,由全等三角形的性質(zhì)得到BD=AE,又由∠1=∠2得到OA=OB,由此即可證明OD=OE;(2)由(1)得OD=OE根據(jù)等腰三角形的性質(zhì)得到∠OED=∠ODE,根據(jù)三角形的內(nèi)角和得到∠OED= (180°﹣∠DOE),∠1= (180°﹣∠AOB),而∠DOE=∠AOB,所以得到∠1=∠OED,然后利用平行線的判定得到DE∥AB,最后證明AD與BE不平行,這樣就可以證明梯形ABED是等腰梯形;(3)由(2)可知DE∥AB,然后得到△DCE∽△ACB,接著利用相似三角形的性質(zhì)即可求出SACB , 然后就可以求出S四邊形ABED
【考點(diǎn)精析】通過靈活運(yùn)用等腰三角形的性質(zhì)和等腰梯形的判定,掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)如圖①,將矩形紙片沿AN折疊,點(diǎn)B落在對(duì)角線AC上的點(diǎn)E處,求BN的長(zhǎng);

(2)如圖②,點(diǎn)M為AB上一點(diǎn),將△BCM沿CM翻折至△ECM,ME與AD相交于點(diǎn)G,CE與AD相交于點(diǎn)F,且AG=GE,求BM的長(zhǎng);

(3)如圖③,將矩形紙片ABCD折疊,使頂點(diǎn)B落在AD邊上的點(diǎn)E處,折痕所在直線同時(shí)經(jīng)過AB、BC(包括端點(diǎn)),設(shè)DE=x,請(qǐng)直接寫出x的取值范圍:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O1、⊙O2相內(nèi)切于點(diǎn)A,其半徑分別是8和4,將⊙O2沿直線O1O2平移至兩圓相外切時(shí),則點(diǎn)O2移動(dòng)的長(zhǎng)度是(
A.4
B.8
C.16
D.8或16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( )

A.
B.
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(3,0),以A為圓心作⊙A與Y軸切于原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,過B作⊙A的切線l.
(1)以直線l為對(duì)稱軸的拋物線過點(diǎn)A及點(diǎn)C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個(gè)交點(diǎn)為D,過D作⊙A的切線DE,E為切點(diǎn),求此切線長(zhǎng);
(3)點(diǎn)F是切線DE上的一個(gè)動(dòng)點(diǎn),當(dāng)△BFD與△EAD相似時(shí),求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1
(3)請(qǐng)?jiān)趛軸上求作一點(diǎn)P,使△PB1C的周長(zhǎng)最小,并寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿足OAOB=OP2 , 我們就把∠APB叫做∠MON的智慧角.

(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),且∠APB=135°.求證:∠APB是∠MON的智慧角.
(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子分別表示∠APB的度數(shù)和△AOB的面積.
(3)如圖3,C是函數(shù)y= (x>0)圖象上的一個(gè)動(dòng)點(diǎn),過C的直線CD分別交x軸和y軸于A,B兩點(diǎn),且滿足BC=2CA,請(qǐng)求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案