【題目】如圖,矩形ABCD中,AB=8,BC=6,點E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為( 。
A. 10B. 4C. 20D. 8
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E、F分別在OD、OC上的動點,且DE=CF,連接DF、AE,AE的延長線交DF于點M,連接OM.
(1)求證:△ADE≌△DCF;
(2)求證:AM⊥DF;
(3)當CD=AF時,試判斷△MOF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點都在反比例函數(shù)的圖象上.
(1)求的值;
(2)如果為軸上一點,為軸上一點,以點為頂點的四邊形是平行四邊形,試求直線的函數(shù)表達式;
(3)將線段沿直線進行對折得到線段,且點始終在直線上,當線段與軸有交點時,則的取值范圍為_______(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為改善辦學條件,計劃采購A、B兩種型號的空調,已知采購3臺A型空調和2臺B型空調,需費用39000元;4臺A型空調比5臺B型空調的費用多6000元.
(1)求A型空調和B型空調每臺各需多少元;
(2)若學校計劃采購A、B兩種型號空調共30臺,且A型空調的臺數(shù)不少于B型空調的一半,兩種型號空調的采購總費用不超過217000元,該校共有哪幾種采購方案?
(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關于x的不等式ax2<kx﹣2的解集;
(2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(2,0)、B(3,1)、C(1,3).
(1)將△ABC沿x軸負方向移動2個單位長度至△A1B1C1,畫圖并寫出點C1的坐標;
(2)以點A1為旋轉中心,將△A1B1C1逆時針方向旋轉90°得到△A2B2C2,畫圖并寫出點C2的坐標;
(3)以B、C1、C2為頂點的三角形是 三角形,其外接圓的半徑R= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結論中:
①abc<0;②b2﹣4ac>0;③3a+c<0;④(a+c)2<b2,⑤a+b+c>0
其中正確的序號是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com