【題目】如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
【答案】(1)證明見解析(2)30°(3)
【解析】
試題分析:(1)連接OB,由圓的半徑相等和已知條件證明∠OBC=90°,即可證明BC是⊙O的切線;
(2)連接OF,AF,BF,首先證明△OAF是等邊三角形,再利用圓周角定理:同弧所對的圓周角是所對圓心角的一半即可求出∠ABF的度數(shù);
(3)過點C作CG⊥BE于G,根據(jù)等腰三角形的性質(zhì)得到EG=BE=5,由兩角相等的三角形相似,△ADE∽△CGE,利用相似三角形對應(yīng)角相等得到sin∠ECG=sinA=,在Rt△ECG中,利用勾股定理求出CG的長,根據(jù)三角形相似得到比例式,代入數(shù)據(jù)即可得到結(jié)果.
試題解析:(1)連接OB,
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC,
又∵CD⊥OA,
∴∠A+∠AED=∠A+∠CEB=90°,
∴∠OBA+∠ABC=90°,
∴OB⊥BC,
∴BC是⊙O的切線;
(2)如圖1,連接OF,AF,BF,
∵DA=DO,CD⊥OA,
∴AF=OF,
∵OA=OF,
∴△OAF是等邊三角形,
∴∠AOF=60°,
∴∠ABF=∠AOF=30°;
(3)如圖2,過點C作CG⊥BE于G,
∵CE=CB,
∴EG=BE=5,
∵∠ADE=∠CGE=90°,∠AED=∠GEC,
∴∠GCE=∠A,
∴△ADE∽△CGE,
∴sin∠ECG=sinA=,即CE=13,
在Rt△ECG中,
∵CG==12,
∵CD=15,CE=13,
∴DE=2,
∵△ADE∽△CGE,
∴,
∴AD=,CG=,
∴⊙O的半徑OA=2AD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB=4,點E、F分別是BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)當(dāng)四邊形AECF為菱形時,求出該菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是安裝在斜屋面上的熱水器,圖2是安裝該熱水器的側(cè)面示意圖.已知,斜屋面的傾角為25°,長為2.1米的真空管AB與水平線AD的夾角為40°,安裝熱水器的鐵架水平橫管BC長0.2米,求鐵架垂直管CE的長(結(jié)果精確到0.01米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( 。
A. 38.15°=38.9′ B. 兩點之間,直線最短
C. 兩條射線構(gòu)成的圖形叫做角 D. 互余的兩個角不可能相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面四個判斷中正確的是( 。.
A. 過圓內(nèi)一點(非圓心)的無數(shù)條弦中,有最長的弦,沒有最短的弦
B. 過圓內(nèi)一點(非圓心)的無數(shù)條弦中,有最短的弦,沒有最長的弦
C. 過圓內(nèi)一點(非圓心)的無數(shù)條弦中,有且只有一條最長的弦,也有且只有一條最短的弦
D. 過圓內(nèi)一點(非圓心)的無數(shù)條弦中,既沒有最長的弦,也沒有最短的弦
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:
(1)求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補(bǔ)充完整;
(2)某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進(jìn)行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當(dāng)以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標(biāo);
(ii)取BC的中點N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(3,﹣4)關(guān)于y軸對稱點P′的坐標(biāo)是( )
A. (﹣3,﹣4) B. (3,4) C. (﹣3,4) D. (﹣4,3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com