頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形.如圖,矩形ABCD中,已知:AB=a,BC=b(a<b),(1)、(2)、(3)是三種不同內(nèi)接菱形的方式.
①圖(1)中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
②圖(2)中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
③圖(3)中,若EF垂直平分對角線AC,交BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
(1)請你從①,②,③三個命題中選擇一個進(jìn)行證明;
(2)在圖(1)、(2)、(3)中,證明圖(3)中菱形AECF是這三個不同的矩形ABCD的內(nèi)接菱形面積最大的;
(3)比較(1)、(2)中矩形ABCD的內(nèi)接菱形ABGH與EFGH的面積大小;
(4)在矩形ABCD中,你還能畫出第4種矩形內(nèi)接菱形嗎?若能,請在(4)中畫出;若不能,則說明理由.

【答案】分析:(1)①先證明是平行四邊形,再根據(jù)一組鄰邊相等證明,
②根據(jù)三角形中位線定理得到四條邊都相等,
③先根據(jù)三角形全等證明是平行四邊形,再根據(jù)對角線互相垂直證明是菱形;
(2)分別表示出三個菱形的面積,根據(jù)邊的關(guān)系即可得出圖(1)圖(2)的面積都小于圖(3)的面積;
(3)根據(jù)a與b的大小關(guān)系,分a>2b,a=2b和a<2b三種情況討論;
(4)先作一條對角線,在作出它的垂直平分線分別與矩形的邊相交,連接四個交點即可.
解答:解:(1)①∵AH=BG,AH∥BG,
∴四邊形ABGH是平行四邊形,
又∵BG=AB,∴平行四邊形ABGH是菱形,
即四邊形ABGH是矩形ABCD的內(nèi)接菱形;(2分)
②連接AC、BD,則EF=AC,EF∥AC;GH=AC,GH∥AC
∴EF=GH,EF∥GH,
∴四邊形EFGH是平行四邊形,
又∵BD=AC,
∴平行四邊形EFGH是菱形,
即四邊形EFGH是矩形ABCD的內(nèi)接菱形;(3分)
③∵∠OAF=∠OCE,OA=OC,∠AOF=∠COE,
∴△AOF≌△COE,
∴四邊形AECF是平行四邊形,
又∵EF垂直平分對角線AC,
∴FA=FC
∴平行四邊形AECF是菱形,
即四邊形AECF是矩形ABCD的內(nèi)接菱形.(4分)

(2)∵S菱形ABGH=a2<a•AE=S菱形AECF
S菱形EFGH=EG•FH<AC•FE=S菱形AECF
∴圖(3)中菱形AECF是這三個不同的矩形ABCD的內(nèi)接菱形面積最大的.(7分)

(3)∵S菱形ABGH=a2,S菱形EFGH=EG•FH=ab
當(dāng)ab時,S菱形ABGH>S菱形EFGH;
當(dāng)a=b時,S菱形ABGH=S菱形EFGH
當(dāng)ab時,S菱形ABGH<S菱形EFGH.(9分)

(4)在矩形ABCD中,還能畫出第4種矩形內(nèi)接菱形
(答案不唯一).如圖,AH=CF,EG垂直平分對角線FH.(10分)
點評:本題綜合性較強,主要考查菱形的判定和面積,對學(xué)生要求較高,需要在平時的學(xué)習(xí)中不斷努力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形.如圖,矩形ABCD中,已知:AB=a,BC=b(a<b),(1)、(2)、(3)是三種不同內(nèi)接菱形的方式.
①圖(1)中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
②圖(2)中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
③圖(3)中,若EF垂直平分對角線AC,交BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
(1)請你從①,②,③三個命題中選擇一個進(jìn)行證明;
(2)在圖(1)、(2)、(3)中,證明圖(3)中菱形AECF是這三個不同的矩形ABCD的內(nèi)接菱形面積最大的;
(3)比較(1)、(2)中矩形ABCD的內(nèi)接菱形ABGH與EFGH的面積大;
(4)在矩形ABCD中,你還能畫出第4種矩形內(nèi)接菱形嗎?若能,請在(4)中畫出;若不能,則說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高安市二模)如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:
命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請解決下列問題:
(1)命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;
(2)畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認(rèn)的,但不全等的內(nèi)接菱形).
(3)試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:

命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;

命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;

命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.

請解決下列問題:

1.命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;

2.畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認(rèn)的,但不全等的內(nèi)接菱形).

3.試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江西宜春高安市中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:

命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請解決下列問題:
【小題1】命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;
【小題2】畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認(rèn)的,但不全等的內(nèi)接菱形).
【小題3】試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江西宜春高安市中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:

命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;

命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;

命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.

請解決下列問題:

1.命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;

2.畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認(rèn)的,但不全等的內(nèi)接菱形).

3.試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系

 

查看答案和解析>>

同步練習(xí)冊答案