【題目】如圖,在平面直角坐標系中,過點的直線與直線相交于點,動點在線段和射線上運動.
(1)求直線的函數關系式.
(2)求的面積.
(3)是否存在點,使的面積與的面積相等?若存在求出此時點的坐標;若不存在,說明理由.
【答案】(1);(2)6;(3),,
【解析】
(1)利用待定系數法即可求得函數的解析式;
(2)先求出點B的橫坐標,再利用三角形的面積公式即可求解;
(3)根據△OMC的面積與的面積相等,根據面積公式即可求得M的橫坐標,用待定系數法求出直線OA的解析式,然后把M的橫坐標分別代入兩個解析式即可求得M的坐標.
(1)因為點C的坐標為(0,6),所以設直線AB的函數表達式為y=kx+6,
把點A的坐標為(4,2)代入得, 4k+6=2,
解得k=-1,
∴直線AB的函數表達式為y=-x+6;
(2)把y=0代入y=-x+6,得
x=6.
∴的面積
(3)設M得橫坐標為x,
由題意得
,
∴,
∴x=2或x=-2.
設直線OA的解析式為y=mx,
把A(4,2)代入得
4m=2,
∴m=,
∴y=x,
把x=2代入y=x得
y=×2=1,
∴M(2,1);
把x=2代入y=-x+6得
y=-2+6=4,
∴M2(2,4);
把x=-2代入y=-x+6得
y=2+6=8;
∴M2(-2,4);
綜上所述:M的坐標是:,,.
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊內一點將繞點C按順時針方向旋轉得,連接已知.
求證:是等邊三角形;
當時,試判斷的形狀,并說明理由;
探究:當為多少度時,是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和小亮兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)實驗,他們實驗的結果如下:
朝上的點數 | ||||||
出現的次數 |
請計算“點朝上”的頻率和“點朝上”的頻率.
一位同學說:“根據實驗,一次實驗中出現點朝上的概率最大”.這位同學的說法正確嗎?為什么?
小明和小亮各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數之和為的倍數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B,E,C,F在同一條直線上,AB=DE,∠B=∠DEF.要使△ABC≌△DEF,則需要再添加的一個條件是_______.(寫出一個即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,他們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由
(2)判斷此時線段PC和線段PQ的關系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設點Q的運動速度為x cm/s,是否存在實數x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC經過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應點,觀察點與點的坐標之間的關系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標,并說說對應點的坐標有哪些特征;
(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應點,求a,b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊形為1個單位長度,線段AD的兩個端點都在格點上,點B是線段AD上的格點,且BD=1,直線l在格線上.
(1)在直線l的左側找一格點C,使得△ABC是等腰三角形(AC<AB),畫出△ABC.
(2)將△ABC沿直線l翻折得到△,試畫出△.
(3)畫出點P,使得點P到點D、A’的距離相等,且到邊AB、AA’的距離相等.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com