【題目】如圖1,某住宅社區(qū)在相鄰兩樓之間修建一個(gè)上方是一個(gè)半圓,下方是長(zhǎng)方形的仿古通道.
(1)現(xiàn)有一輛卡車裝滿家具后,高為3.6米,寬為3.2米,請(qǐng)問(wèn)這輛送家具的卡車能通過(guò)這個(gè)通道嗎?為什么?
(2)如圖2,若通道正中間有一個(gè)0.4米寬的隔離帶,問(wèn)一輛寬1.5米高3.8米的車能通過(guò)這個(gè)通道嗎?為什么?
【答案】(1)能;(2)不能.
【解析】
(1)作弦EF∥AD,OH⊥EF于H,連接OF,在直角△OFH中,根據(jù)三角函數(shù)就可以求出OH,求出隧道的高.即可得到結(jié)論;
(2)同(1)求得HF和HM,然后求得MF后與1.5米比較即可.
(1)如圖,設(shè)半圓O的半徑為R,則R=2,作弦EF∥AD,且EF=3.2,OH⊥EF于H,連接OF,由OH⊥EF,∴HF=EF=1.6m.
又∵OH1.2,∴OH+AB=1.2+2.6=3.8>3.6,∴這輛卡車能通過(guò)此隧道;
(2)如圖2,當(dāng)車高3.8米時(shí),OH=3.8﹣2.6=1.2米,此時(shí)HF1.6米.
∵通道正中間有一個(gè)0.4米寬的隔離帶,∴HM=0.2米,∴MF=HF﹣HM<1.5米,∴不能通過(guò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處,請(qǐng)結(jié)合圖完成下列各題:
(1)寫(xiě)出tan∠ABC;AB的值;(結(jié)果保留根號(hào)).
(2)將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)對(duì)應(yīng)的△A′B′C′,并求直線A′C′的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=4.某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO中,∠AOB=90°,點(diǎn)A在第一象限,點(diǎn)B在第二象限,且AO:BO=1:2,若經(jīng)過(guò)點(diǎn)A的反比例函數(shù)解析式為y=,則經(jīng)過(guò)點(diǎn)B(x,y)的反比例函數(shù)解析式為(。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=5,P是矩形內(nèi)部一動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為一圓洞門(mén).工匠在建造過(guò)程中需要一根橫梁AB和兩根對(duì)稱的立柱CE、DF來(lái)支撐,點(diǎn)A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.
(1)求出圓洞門(mén)⊙O的半徑;
(2)求立柱CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某一時(shí)刻太陽(yáng)光從教室窗戶射入室內(nèi),與地面的夾角為,窗戶的一部分在教室地面所形成的影長(zhǎng)為米,窗戶的高度為米.求窗外遮陽(yáng)蓬外端一點(diǎn)到教室窗戶上椽的距離.(參考數(shù)據(jù):,結(jié)果精確米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技開(kāi)發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購(gòu)買(mǎi)該新型產(chǎn)品,公司決定商家一次購(gòu)買(mǎi)這種新型產(chǎn)品不超過(guò)10件時(shí),每件按3000元銷售;若一次購(gòu)買(mǎi)該種產(chǎn)品超過(guò)10件時(shí),每多購(gòu)買(mǎi)一件,所購(gòu)買(mǎi)的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.
(1)商家一次購(gòu)買(mǎi)這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2600元?
(2)設(shè)商家一次購(gòu)買(mǎi)這種產(chǎn)品x件,開(kāi)發(fā)公司所獲的利潤(rùn)為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購(gòu)買(mǎi)產(chǎn)品的件數(shù)超過(guò)某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購(gòu)買(mǎi)的數(shù)量的增多,公司所獲的利潤(rùn)反而減少這一情況.為使商家一次購(gòu)買(mǎi)的數(shù)量越多,公司所獲的利潤(rùn)最大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元(其它銷售條件不變)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com