(2003•寧波)已知拋物線y=x2+x+b2經(jīng)過點(a,-)和(-a,y1),則y1的值是   
【答案】分析:比較拋物線經(jīng)過的兩點坐標(biāo),把點(a,-)代入拋物線解析式,待定系數(shù)更少;將代入后所得式子變形為兩個非負(fù)數(shù)的和為0的形式,可求a、b的值,從而可求拋物線解析式及另一點的縱坐標(biāo).
解答:解:已知拋物線y=x2+x+b2經(jīng)過點(a,-),
則有a2+a+b2=-;
化簡可得:(a+2+b2=0;
解得a=-,b=0;
所以原函數(shù)式為:y=x2+x,
點(-a,y1)即為(,y1),
把x=代入y=x2+x中,得y1=
點評:利用二次函數(shù)的概念性質(zhì),求值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•寧波)已知拋物線y=ax2+bx+c的頂點坐標(biāo)為(4,-1),與y軸交于點C(0,3),O是原點.
(1)求這條拋物線的解析式;
(2)設(shè)此拋物線與x軸的交點為A,B(A在B的左邊),問在y軸上是否存在點P,使以O(shè),B,P為頂點的三角形與△AOC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:填空題

(2003•寧波)已知拋物線y=x2+x+b2經(jīng)過點(a,-)和(-a,y1),則y1的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2003•寧波)已知:如圖,△ABC中,AB=BC=CA=6,BC在x軸上,BC邊上的高線AO在y軸上,直線△APC點轉(zhuǎn)動(與線段BC沒有交點).設(shè)與AB、l、x軸相切的⊙O1的半徑為r1,與AC、l、x軸相切的⊙O2的半徑為r2
(1)當(dāng)直線l繞點A轉(zhuǎn)到任何位置時,⊙O1、⊙O2的面積之和最小,為什么?
(2)若,求圖象經(jīng)過點O1、O2的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年浙江省寧波市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•寧波)已知:如圖,△ABC中,AB=BC=CA=6,BC在x軸上,BC邊上的高線AO在y軸上,直線△APC點轉(zhuǎn)動(與線段BC沒有交點).設(shè)與AB、l、x軸相切的⊙O1的半徑為r1,與AC、l、x軸相切的⊙O2的半徑為r2
(1)當(dāng)直線l繞點A轉(zhuǎn)到任何位置時,⊙O1、⊙O2的面積之和最小,為什么?
(2)若,求圖象經(jīng)過點O1、O2的一次函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案