△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,關(guān)于x的方程x2-2ax+b2=0的兩根為x1、x2,x軸上兩點(diǎn)M、N的坐標(biāo)分別為(x1,0)、(x2,0),其中M的坐標(biāo)是(a+c,0);P是y軸上一點(diǎn),點(diǎn)

1.試判斷△ABC的形狀,并說明理由

2.若SMNP=3SNOP,

 ①求sinB的值;

②判斷△ABC的三邊長(zhǎng)能否取一組適當(dāng)?shù)闹,使△MND是等腰直角三角形?如能,請(qǐng)求出這組值;如不能,請(qǐng)說明理由

 

 

1.證明:∵點(diǎn)

     ∴              1分

    ∴   ∴.    1分

   由勾股定理的逆定理得:

    為直角三角形且∠A=90°         1分

2.解:①如圖所示;

   即       1分

  ∴ 

,是方程x2-2ax+b2=0的兩根

    ∴         1分

由(1)知:在中,∠A=90°

由勾股定理得      ∴sinB=         1分

  ② 能              1分

過D作DE⊥x軸于點(diǎn)    則NE=EM  DN=DM

要使為等腰直角三角形,只須ED=MN=EM

       ∴  

   又c>0,∴c=1              1分

由于c=a   b=a   ∴a=  b=             1分

∴當(dāng)a=,b=,c=1時(shí),為等腰直角三角形        1分

 解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,DE∥BC,DE與AB相交于D,與AC相交于E,若AC=8,EC=3,DB=4,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,則a+c=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=2,AB=3,D是AC上一點(diǎn),E是AB上一點(diǎn),且∠ADE=∠B,設(shè)AD=x,AE=y,則y與x之間的函數(shù)關(guān)系式是( 。
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=8,AC=6,BC=7,點(diǎn)D在AC上,AD=2,
(1)過點(diǎn)D畫直線,使它截△ABC的兩邊所得的小三角形與△ABC相似(圖形備用,標(biāo)出與∠B相等的角);
(2)若截線與AB交于E,求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、在△ABC中,AB=3,BC=8,則AC的取值范圍是
5<AC<11

查看答案和解析>>

同步練習(xí)冊(cè)答案