【題目】如圖,正方形 ABCD 中,AD6,點 E 是對角線 AC 上一點,連接 DE,過點 E EF ED,交 AB 于點 F,連接 DF,交 AC 于點 G,將EFG 沿 EF 翻折,得到EFM,連接DM,交 EF 于點 N,若點 F AB 邊的中點,則 EDM 的面積是_____

【答案】

【解析】

DF的中點K,連接AKKE,GM,得出點D、AF、E四點共圓,進而得出△DEF是等腰直角三角形,通過已知數(shù)據(jù)計算出DFDE,EF的長度,再由相似得出GF,由折疊的性質(zhì)得到△GFM是等腰直角三角形,進而計算出MH,EH的長度,由△DEN∽△MHN得到EH的長度,最后由即可計算.

解:取DF的中點K,連接AKKE,GM

∵四邊形ABCD是正方形,DEEF,

∴∠DAF=90°,∠DAC=45°,

AK=,EK=,

∴點D、A、F、E四點共圓,

∴∠DFE=∠DAC=45°(同弧所對的圓周角相等),

∴△DEF是等腰直角三角形,

又∵AD=6,點 F AB 邊的中點,

AF=3,DF=,

DE=EF=,

又∵AFDC

AGF∽△CGD

,即,

,

又∵△EFM是由△EFG翻折得到,

GMEF,∠EFG=∠EFM=45°,GF=MF

∴△GFM是等腰直角三角形,

GM=

MH=FH=,

EH=EF-FH=

又∵DE⊥EF,MH⊥EF,

∴△DEN∽△MHN

,即

,

,

=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M﹣2m).

1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】倡導(dǎo)健康生活推進全民健身,某社區(qū)去年購進A,B兩種健身器材若干件,經(jīng)了解,B種健身器材的單價是A種健身器材的15倍,用7200元購買A種健身器材比用5400元購買B種健身器材多10件.

1A,B兩種健身器材的單價分別是多少元?

2)若今年兩種健身器材的單價和去年保持不變,該社區(qū)計劃再購進A,B兩種健身器材共50件,且費用不超過21000元,請問:A種健身器材至少要購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線y=x﹣3與x軸、y軸分別交于點A、B,拋物線y=x2+bx+c經(jīng)過點A、B,且交x軸于點C.

(1)求拋物線的解析式;

(2)點P為拋物線上一點,且點P在AB的下方,設(shè)點P的橫坐標(biāo)為m.

試求當(dāng)m為何值時,PAB的面積最大;

當(dāng)PAB的面積最大時,過點P作x軸的垂線PD,垂足為點D,問在直線PD上否存在點Q,使QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標(biāo)若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為∠ABC的邊上的一點,過點OOMAB于點,到點的距離等于線段OM的長的所有點組成圖形.圖形W與射線交于E,F兩點(點在點F的左側(cè)).

1)過點于點,如果BE=2,求MH的長;

2)將射線BC繞點B順時針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點的個數(shù),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:

公交車用時

公交車用時的頻數(shù)

線路

合計

A

59

151

166

124

500

B

50

50

122

278

500

C

45

265

167

23

500

早高峰期間,乘坐_________(填“A”,“B”“C”)線路上的公交車,從甲地到乙地用時不超過45分鐘的可能性最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A在第一象限,軸于B點,連結(jié),將折疊,使點落在x軸上,折痕交邊于D點,交斜邊E點,(1)若A點的坐標(biāo)為,當(dāng)時,點的坐標(biāo)是______;(2)若與原點O重合,,雙曲線的圖象恰好經(jīng)過D,E兩點(如圖2),則____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx1a≠0)交x軸于A,B10)兩點,交y軸于點C,一次函數(shù)yx+3的圖象交坐標(biāo)軸于A,D兩點,E為直線AD上一點,作EFx軸,交拋物線于點F

1)求拋物線的解析式;

2)若點F位于直線AD的下方,請問線段EF是否有最大值?若有,求出最大值并求出點E的坐標(biāo);若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲車與乙車同時從A地出發(fā)去往B地,如圖所示,折線OABC和射線OC分別是甲、乙兩車行進過程中路程與時間的關(guān)系,已知甲車中途有事停留36分鐘后再繼續(xù)前往C地,兩車同時到達C地,則下列說法:乙車的速度為70千米/時;甲車再次出發(fā)后的速度為100千米/時;兩車在到達B地前不會相遇;甲車再次出發(fā)時,兩車相距60千米.其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案