【題目】如圖,與⊙相切于點為⊙的弦,,相交于點.

(1)求證:;

(2),,求線段的長.

【答案】(1) 證明見解析;(2) .

【解析】

(1)根據(jù)已知條件,結(jié)合同角的余角相等的性質(zhì)易證∠APB=∠ABP,即可證得AP=AB;(2)OH⊥BCH.Rt△OAB中,根據(jù)勾股定理求得OA的長;在Rt△POC中,根據(jù)勾股定理求得PC的長;再利用直角三角形面積的兩種表示法求得OH的長,在Rt△OCH中,根據(jù)勾股定理求得求得CH的長;利用垂徑定理求得BC的長,即可求得PB的長.

(1)證明:∵OC=OB,

∴∠OCB=∠OBC,

∵AB是⊙O的切線,

∴OB⊥AB,

∴∠OBA=90°,

∴∠ABP+∠OBC=90°,

∵OC⊥AO,

∴∠AOC=90°,

∴∠OCB+∠CPO=90°,

∵∠APB=∠CPO,

∴∠APB=∠ABP,

∴AP=AB.

(2)作OH⊥BCH.

Rt△OAB中, OB=4,AB=3,根據(jù)勾股定理求得OA=5,

∵AP=AB=3,

∴PO=2.

Rt△POC中,根據(jù)勾股定理求得PC=2.

PCOH=OCOP,

∴OH=,

∴CH=

∵OH⊥BC,

∴CH=BH,

∴BC=2CH=

∴PB=BC-PC=-2 =

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)y=x+1的圖象與y軸交于點A,一次函數(shù)y=kx+b的圖象經(jīng)過點B0,﹣1),與x軸以及y=x+1的圖象分別交于點C、D,且點D的坐標為(1,n),

1)求一次函數(shù)y=kx+b的函數(shù)關(guān)系式

2)求四邊形AOCD的面積;

3)是否存在y軸上的點P,使得以BD為底的△PBD等腰三角形?若存在求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,射線AP△ABC的外側(cè),點B關(guān)于AP的對稱點為D,連接CD交射線AP于點E,連接BE.

(1)根據(jù)題意補全圖形;

(2)求證:CD=EB+EC;

(3)求證:∠ABE=∠ACE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:

設(shè)(其中、、均為整數(shù)),則有.

,.這樣小明就找到了一種把類似的式子化為平方式的方法.

請你仿照小明的方法解決下列問題:

(1)、、均為正整數(shù)時,若,用含、的式子分別表示,得_________,_________.

(2)利用所探索的結(jié)論,填空:(_____+_____)2;

(3),且、、均為正整數(shù),求的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點,若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:要將一塊直徑為的半圓形鐵皮加工成一個圓柱的兩個底面和一個圓錐的底面.

操作:

方案一:在圖中,設(shè)計一個圓錐底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫示意圖);

方案二:在圖中,設(shè)計一個圓柱兩個底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫示意圖).

探究:

求方案一中圓錐底面的半徑;

求方案二中半圓圓心為,圓柱兩個底面圓心為、,圓錐底面的圓心為,試判斷以、、為頂點的四邊形是什么樣的特殊四邊形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要建一個面積為150平方米的長方形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻,墻長為18米,另三邊用籬笆圍成,如籬笆長度為35米,且要求用完。求雞場的長與寬各是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).

(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))

(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中ABBC,EFBC,AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. B. C. D.

查看答案和解析>>

同步練習冊答案