精英家教網 > 初中數學 > 題目詳情
已知直線的交點為,則方程組的解為       。
.

試題分析:由于函數圖象交點坐標為兩函數解析式組成的方程組的解.那么所求方程組的解即為兩函數的交點坐標.
把直線整理為:.
因此直線的交點坐標即為方程組的解.
∴方程組的解為.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

在學習三角形中線的知識時,小明了解到:三角形的任意一條中線所在的直線可以把該三角形分為面積相等的兩部分。進而,小明繼續(xù)研究,過四邊形的某一頂點的直線能否將該四邊形平分為面積相等的兩部分?他畫出了如下示意圖(如圖1),得到了符合要求的直線AF.

小明的作圖步驟如下:
第一步:連結AC;
第二步:過點B作BE//AC交DC的延長線于點E;
第三步:取ED中點F,作直線AF;
則直線AF即為所求.
請參考小明思考問題的方法,解決問題:
如圖2,五邊形ABOCD,各頂點坐標為:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).請你構造一條經過頂點A的直線,將五邊形ABOCD分為面積相等的兩部分,并求出該直線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在平面直角坐標系中,直線l:y=x+1交x軸于點A,交y軸于點B,點A1、A2、A3,…在x軸上,點B1、B2、B3,…在直線l上.若△OB1A1,△A1B2A2,△A2B3A3,…均為等邊三角形,則△A5B6A6的周長是( 。
A.B.
C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,點A的坐標為(6,0),點B為y軸的負半軸上的一個動點,分別以OB,AB為直角邊在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,連接EF交y軸于P點,當點B在y軸上移動時,PB的長度為( )
A.2B.3
C.4D.PB的長度隨點B的運動而變化

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

爾凡駕車從甲地到乙地,設他出發(fā)第xmin時的速度為ykm/h,圖中的折線表示他在整個駕車過程中y與x之間的函數關系.
(1)當20≤x≤30時,汽車的平均速度為   km/h,該段時間行駛的路程為      km;
(2)當30≤x≤35時,求y與x之間的函數關系式,并求出爾凡出發(fā)第32min時的速度;
(3)如果汽車每行駛100km耗油8L,那么爾凡駕車從甲地到乙地共耗油多少升?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,點A的坐標為(-1,0),點B在直線y=2x-4上運動,當線段AB最短時,點B的坐標是(   )
A.(-,-B.(,C.(-D.(,-

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

一天,某漁船離開港口前往黃巖島海域捕魚,8小時后返航,此時一艘漁政船從該港口出發(fā)前往黃巖島巡查(假設漁政船與漁船沿同一航線航行)。下圖是漁政船及漁船到港口的距離S和漁船離開港口的時間t之間的函數圖象.
(1)寫出漁船離港口的距離S和它離開港口的時間t的函數關系式;
(2)在漁船返航途中,什么時間范圍內兩船間距離不超過30海里?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

觀察下表,則變量y與x的關系式為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

“節(jié)能環(huán)保,低碳生活”是我們倡導的一種生活方式,某家電商場計劃用11.8萬元購進節(jié)能型電視機、洗衣機和空調共40臺,三種家電的進價和售價如表所示:
價格種類
進價(元/臺)
售價(元/臺)
電視機
5000
5500
洗衣機
2000
2160
空調
2400
2700
(1)在不超出現(xiàn)有資金的前提下,若購進電視機的數量和洗衣機的數量相同,空調的數量不超過電視機的數量的3倍.請問商場有哪幾種進貨方案?
(2)在“2012年消費促進月”促銷活動期間,商家針對這三種節(jié)能型產品推出“現(xiàn)金每購1000元送50元家電消費券一張、多買多送”的活動.在(1)的條件下,若三種電器在活動期間全部售出,商家預估最多送出多少張?

查看答案和解析>>

同步練習冊答案