【題目】已知,如圖,有一塊含有30°的直角三角形的直角邊的長恰與另一塊等腰直角三角形的斜邊的長相等.把該套三角板放置在平面直角坐標(biāo)系中,且
(1)若某開口向下的拋物線的頂點(diǎn)恰好為點(diǎn),請寫出一個(gè)滿足條件的拋物線的解析式.
(2)若把含30°的直角三角形繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)后,斜邊恰好與軸重疊,點(diǎn)落在點(diǎn),試求圖中陰影部分的面積(結(jié)果保留)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:連接拋物線上兩點(diǎn)的線段叫拋物線的弦,在這兩點(diǎn)之間拋物線上的任意一點(diǎn)P與此兩點(diǎn)構(gòu)成的三角形稱作拋物線的弦三角,點(diǎn)P稱作弦錐,設(shè)點(diǎn)P的橫坐標(biāo)為x.
已知拋物線經(jīng)過A(1,2)、B(m,n)、C(3,﹣2)三點(diǎn),P是拋物線上AC之間的一點(diǎn),以AC為弦的弦三角為△PAC.
(1)圖一,當(dāng)m=2,n=1時(shí),求該拋物線的解析式,若x=k1時(shí)△PAC的面積最大,求k1的值.
(2)圖二,當(dāng)m=2,n≠1時(shí),用n表示該拋物線的解析式,若x=k2時(shí)△PAC的面積最大,求k2的值.k1與k2有何數(shù)量關(guān)系?
(3)圖三,當(dāng)m≠2,n≠1時(shí),用m,n表示該拋物線的解析式,若x=k3時(shí)△PAC的面積最大,求k3的值.觀察圖1,2,3,過定點(diǎn)A、C,根據(jù)B在各種不同位置所得計(jì)算結(jié)果,你發(fā)現(xiàn)通過兩個(gè)定點(diǎn)的拋物線系中,以此兩點(diǎn)為弦的弦三角的面積取得最大值時(shí),弦錐的橫坐標(biāo)有何規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡度i=1:的斜坡AB上立有一電線桿EF,工程師在點(diǎn)A處測得E的仰角為60°,沿斜坡前進(jìn)20米到達(dá)B,此時(shí)測得點(diǎn)E的仰角為15°,現(xiàn)要在斜坡AB上找一點(diǎn)P,在P處安裝一根拉繩PE來固定電線桿,以使EF保持豎直,為使拉繩PE最短,則FP的長度約為_____.(參考數(shù)據(jù):=1.414,=1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,AB=5,BC=4,點(diǎn)D為邊AC上的動(dòng)點(diǎn),作菱形DEFG,使點(diǎn)E、F在邊AB上,點(diǎn)G在邊BC上.若這樣的菱形能作出兩個(gè),則AD的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.
(1)求復(fù)耕土地和改造土地面積各為多少公頃;
(2)該地區(qū)對需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場的總面積最多為多少公頃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋有個(gè)黑球和若干個(gè)白球,在不允許將球倒出來的前提下,小明為估計(jì)其中的白球數(shù),采用了如下的方法:從口袋中隨機(jī)摸出一球,記下顏色,然后把它放回口袋中,搖勻后再隨機(jī)摸出一球,記下顏色,再放回口袋中,…,不斷重復(fù)上述過程,小明共摸了次,其中次摸到黑球.根據(jù)上述數(shù)據(jù),小明正估計(jì)口袋中的白球的個(gè)數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點(diǎn)M,點(diǎn)F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點(diǎn)E是BC的中點(diǎn),若點(diǎn)P以1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動(dòng);點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到F點(diǎn)時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在邊長為l的正方形網(wǎng)格中如圖所示.
①以點(diǎn)C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點(diǎn)C的異側(cè),并表示出A1的坐標(biāo).
②作出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后的圖形△A2B2C.
③在②的條件下求出點(diǎn)B經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com