【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=,且經(jīng)過點(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點,則y1<y2.其中說法正確的有( )

A. ②③④ B. ①②③ C. ①④ D. ①②④

【答案】D

【解析】

根據(jù)圖象得出a<0, a+b=0,c>0,即可判斷①②;x=2代入拋物線的解析式即可判斷③,根據(jù)(2,y1),(y2)到對稱軸的距離即可判斷④.

∵二次函數(shù)的圖象的開口向下,

a<0,

∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,

c>0,

∵二次函數(shù)圖象的對稱軸是直線x=,

a=-b,

b>0,

abc<0,故①正確;

a=-b, a+b=0,故②正確;

x=2代入拋物線的解析式得,

4a+2b+c=0,故③錯誤;

,

故④正確;

故選D..

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】廣安市某樓盤準備以每平方米6000元的均價對外銷售,由于國務院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米4860元的均價開盤銷售.

1)求平均每次下調(diào)的百分率.

2)某人準備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:9.8折銷售;不打折,一次性送裝修費每平方米80元,試問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2的圖象交于 A(﹣1,a),B 兩點.

(1)求出反比例函數(shù)的解析式及點 B 的坐標;

(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;

(3) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點,若POB 的面積為 1,請直接寫出點 P的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=DAC上一點,DEAB于點EAC=12,BC=5

1的值;

2時,求的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABACO的兩條切線,B,C為切點,連接CO并延長交AB于點D,交O于點E,連接BE,連接AO

1)求證:AOBE;

2)若DE2,tanBEO,求DO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)閱讀資料:

如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點間的距離為AB=

我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖2,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當O的半徑為r時,O的方程可寫為:x2+y2=r2

問題拓展:如果圓心坐標為P(a,b),半徑為r,那么P的方程可以寫為

綜合應用:

如圖3,P與x軸相切于原點O,P點坐標為(0,6),A是P上一點,連接OA,使tanPOA=,作PDOA,垂足為D,延長PD交x軸于點B,連接AB

證明AB是P的切點;

是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以OQ為半徑的O的方程;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉(zhuǎn)60°到AQ,連接PQ、QC.

(1)求證:PB=QC;

(2)若PA=3,PB=4,∠APB=150°,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線Lyx2x-6x軸相交于A、B兩點(點A在點B的左側(cè)),并與y軸相交于點C

(1)A、B、C三點的坐標,并求出ABC的面積;

(2)將拋物線向左或向右平移,得到拋物線L,且Lx軸相交于A、B兩點(點A在點B的左側(cè)),并與y軸交于點C,要使ABCABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案