【題目】如圖,內(nèi)接于,于點,于點、相交于點.若,,則的半徑為(

A. B. C. D.

【答案】C

【解析】

作直徑CM,連接MB、MA,做OF⊥BCF,推出∠MAC=∠MBC=90°,求出平行四邊形MBHA,求出BM,求出OF,根據(jù)垂徑定理求出CF,根據(jù)勾股定理求出OC即可.

作直徑CM,連接MB、MA,作OF⊥BC于F,如圖所示:


∵CM為直徑,
∴∠MBC=∠MAC=90°,
又∵∠ADC=∠BEC=90°
∴∠MBC=∠ADC,∠MAC=∠BEC,
∴MB∥AD,MA∥BE,
∴四邊形MBHA為平行四邊形,
∴MB=AH=4,
又∵OF⊥BC,OF過O,
∴根據(jù)垂徑定理:CF=FB=BC=3;
又∵CO=OM,
∴OF=MB=2,
∴在Rt△COF中,OC2=OF2+CF2=22+32=13,
∴OC=,
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,BP、CP分別是△ABC的外角∠CBD、∠BCE的角平分線,BQ、CQ分別是∠PBC、∠PCB的角平分線,BM、CN分別是∠PBD、∠PCE的角平分線,∠BACα

1)當(dāng)α40°時,∠BPC   °,∠BQC   °;

2)當(dāng)α   °時,BMCN;

3)如圖,當(dāng)α120°時,BM、CN所在直線交于點O,求∠BOC的度數(shù);

4)在α60°的條件下,直接寫出∠BPC、∠BQC、∠BOC三角之間的數(shù)量關(guān)系:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球.怎樣估算不同顏色球的數(shù)量?

操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進(jìn)行摸球試驗.摸球試驗的要求:先攪拌均勻,每次隨機摸出一個球,放回盒中,再繼續(xù).

活動結(jié)果:摸球試驗一共做了50,統(tǒng)計結(jié)果如下表:

球的顏色

無記號

有記號

紅色

黃色

紅色

黃色

摸到的次數(shù)

18

28

2

2

推測計算.由上述的摸球試驗可推算:

(1)盒中紅球、黃球各占總球數(shù)的百分比是多少?

(2)盒中有紅球多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究相似問題時,甲、乙同學(xué)的觀點如下:

甲:將邊長為34、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為35的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.

對于兩人的觀點,下列說法正確的是( )

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;,其中正確結(jié)論的個數(shù)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

用配方法求該拋物線的對稱軸,并說明:當(dāng)取何值時,的值隨值的增大而減。

將二次函數(shù)的圖象經(jīng)過怎樣的平移能得到的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DM垂直平分AC,交BC于點D,連接AD,若C=28°,AB=BD,則B的度數(shù)為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,P是線段BC上一點,.作點B關(guān)于直線AP的對稱點D, 連結(jié)BDCD,AD.

1)補全圖形.

2)設(shè)∠BAP的大小為α.求∠ADC的大小(用含α的代數(shù)式表示).

3)延長CDAP交于點E,直接用等式表示線段BDDE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為(  )

A. 8 B. 8 C. 4 D. 6

查看答案和解析>>

同步練習(xí)冊答案