【題目】如圖,已知二次函數(shù)的圖象與軸分別交于兩點(diǎn),與軸交于點(diǎn),,則由拋物線的特征寫(xiě)出如下結(jié)論中錯(cuò)誤的是( )
A.B.
C.D.
【答案】B
【解析】
此題可根據(jù)二次函數(shù)的性質(zhì),結(jié)合其圖象可知:a<0,0<c<1,b<0,再對(duì)各結(jié)論進(jìn)行判斷.
①觀察圖象可知,開(kāi)口向下a<0,對(duì)稱(chēng)軸在左側(cè)b<0,與y軸交于正半軸0<c<1,
∴abc>0,故A正確;
②∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b24ac>0,即4acb2<0,故B錯(cuò)誤;
③當(dāng)x=1時(shí)y=ab+c,由圖象知(1,ab+c)在第二象限,
∴ab+c>0,故C正確
④設(shè)C(0,c),則OC=|c|,
∵OA=OC=|c|,
∴A(c,0)代入拋物線得ac2+bc+c=0,又c≠0,
∴ac+b+1=0,故D正確;
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),把點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),我們發(fā)現(xiàn)點(diǎn)隨點(diǎn)變化而變化.若點(diǎn)在運(yùn)動(dòng)變化過(guò)程中始終在拋物線的上方,設(shè)點(diǎn)的橫坐標(biāo)為,則的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線過(guò)點(diǎn),頂點(diǎn)為M,與x軸交于AB兩點(diǎn),D為AB的中點(diǎn),軸,交拋物線于點(diǎn)E,下列結(jié)論中正確的是( )
A.拋物線的對(duì)稱(chēng)軸是直線x=-3B.
C.D.四邊形ADEC是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=∠DCE=90°,連接BE,AD,兩條線段所在的直線交于點(diǎn)P.
(1)線段BE與AD有何數(shù)量關(guān)系和位置關(guān)系,請(qǐng)說(shuō)明理由.
(2)若已知BC=12,DC=5,△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),
①如圖2,當(dāng)點(diǎn)D恰好落在BC的延長(zhǎng)線上時(shí),求AP的長(zhǎng);
②在旋轉(zhuǎn)一周的過(guò)程中,設(shè)△PAB的面積為S,求S的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸為直線x=﹣1,經(jīng)過(guò)點(diǎn)(0,1)有以下結(jié)論:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中所有正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:各類(lèi)方程的解法
求解一元一次方程, 根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式;求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來(lái)解.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生不適合原方程的根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想-轉(zhuǎn)化,即:把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程可以通過(guò)因式分解把它轉(zhuǎn)化為,解方程和,可得方程的解
問(wèn)題:方程的解是 , ,
拓展:用“轉(zhuǎn)化”思想求方程的解;
變式:用“轉(zhuǎn)化”思想解方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用周長(zhǎng)為米的籬笆圍成.已知墻長(zhǎng)米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為米.
(1)若苗圃園的面積為平方米,求的值;
(2)若平行于墻的一邊長(zhǎng)不小于米,這個(gè)苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形中,過(guò)作于,交于,過(guò)作于,交于,連結(jié)、.
求證:;
當(dāng)四邊形滿足什么條件時(shí),四邊形是菱形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x﹣2與x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當(dāng)點(diǎn)B落在直線y=x﹣2上時(shí),則△OAB平移的距離是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com