【題目】1)如圖,請(qǐng)證明∠A+B+C180°

2)如圖的圖形我們把它稱(chēng)為“8字形,請(qǐng)證明∠A+B=∠C+D

3)如圖,EDC的延長(zhǎng)線上,AP平分∠BAD,CP平分∠BCE,猜想∠P與∠B、∠D之間的關(guān)系,并證明

4)如圖,ABCD,PA平分∠BAC,PC平分∠ACD,過(guò)點(diǎn)PPM、PECDM,交ABE,則①∠1+2+3+4不變;②∠3+4﹣∠1﹣∠2不變,選擇正確的并給予證明.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3)∠P90°+(∠B+D);(4)∠3+4﹣∠1﹣∠2不變正確.理由見(jiàn)解析

【解析】

1)延長(zhǎng)BCD,過(guò)點(diǎn)CCEBA,根據(jù)兩直線平行,同位角相等可得∠B=∠1,兩直線平行,內(nèi)錯(cuò)角相等可得∠A=∠2,再根據(jù)平角的定義列式整理即可得證;

2)根據(jù)三角形內(nèi)角和定理即可證明;

3)根據(jù)(2)的結(jié)論∠B+BAD=∠D+BCD,∠PAD+P=∠D+PCD,然后整理即可得解;

4)作PQAB,根據(jù)平行線性質(zhì)得到PQCD,則∠APQ180°﹣∠3﹣∠4,∠5=∠2,由于∠APQ+5+190°,則180°﹣∠3﹣∠4+2+190°,整理得到∠3+4﹣∠1﹣∠290°

1)證明:如圖1,延長(zhǎng)BCD,過(guò)點(diǎn)CCEBA,

BACE,

∴∠B=∠1,

A=∠2

又∵∠BCD=∠BCA+2+1180°,

∴∠A+B+ACB180°;

2)證明:如圖2,在AOB中,∠A+B+AOB180°,

COD中,∠C+D+COD180°,

∵∠AOB=∠COD

∴∠A+B=∠C+D;

3)如圖3

AP平分∠BAD,CP平分∠BCD的外角∠BCE

∴∠1=∠2,∠3=∠4

∵(∠1+2+B=(180°23+D,

2+P=(180°﹣∠3+D,

2P180°+D+B,

∴∠P90°+(∠B+D);

4)②∠3+4﹣∠1﹣∠2不變正確.

理由如下:

PQAB,如圖4,

ABCD

PQCD,

ABPQ得∠APQ+3+4180°,即∠APQ180°﹣∠3﹣∠4,

PQCD得∠5=∠2,

∵∠APQ+5+190°

180°﹣∠3﹣∠4+2+190°,

∴∠3+4﹣∠1﹣∠290°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形 的邊長(zhǎng) .某一時(shí)刻,動(dòng)點(diǎn) 點(diǎn)出發(fā)沿 方向以 的速度向 點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn) 點(diǎn)出發(fā)沿 方向以 的速度向 點(diǎn)勻速運(yùn)動(dòng),問(wèn):

(1)經(jīng)過(guò)多少時(shí)間, 的面積等于矩形 面積的 ?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與 相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點(diǎn)E,過(guò)點(diǎn)E作直線ED⊥AF,交AF的延長(zhǎng)線于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)C.

(1)求證:CD是⊙O的切線;
(2)若tanC= ,⊙O的半徑為2,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,設(shè)△ABC的面積為S,周長(zhǎng)為l

(1)填表:

三邊a、bc

3、4、5

2

5、12、13

4

8、15、17

6

(2)如果,觀察上表猜想: (用含有m的代數(shù)式表示).

(3)證明(2)中的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A20)同時(shí)出發(fā),沿長(zhǎng)方形BCDE的邊作環(huán)繞運(yùn)動(dòng).物體甲按逆時(shí)針?lè)较蛞?/span>1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?/span>2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2017次相遇地點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市開(kāi)展一項(xiàng)自行車(chē)旅游活動(dòng),線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問(wèn)沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,點(diǎn)D是線段AC上的一動(dòng)點(diǎn),EBC的延長(zhǎng)線上,且BDDE

(1)如圖,若點(diǎn)D為線段AC的中點(diǎn),求證:ADCE;

(2)如圖,若點(diǎn)D為線段AC上任意一點(diǎn),求證:ADCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、OB相交于點(diǎn)C、D,問(wèn)PCPD相等嗎?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù) 的圖像經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9).

(1)求該二次函數(shù)的表達(dá)式;
(2)寫(xiě)出該拋物線的對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo);
(3)點(diǎn)Pm , m)與點(diǎn)Q均在該函數(shù)圖像上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),求m的值及點(diǎn)Q x軸的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案