【題目】(1)如圖,請(qǐng)證明∠A+∠B+∠C=180°
(2)如圖的圖形我們把它稱(chēng)為“8字形”,請(qǐng)證明∠A+∠B=∠C+∠D
(3)如圖,E在DC的延長(zhǎng)線上,AP平分∠BAD,CP平分∠BCE,猜想∠P與∠B、∠D之間的關(guān)系,并證明
(4)如圖,AB∥CD,PA平分∠BAC,PC平分∠ACD,過(guò)點(diǎn)P作PM、PE交CD于M,交AB于E,則①∠1+∠2+∠3+∠4不變;②∠3+∠4﹣∠1﹣∠2不變,選擇正確的并給予證明.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)∠P=90°+(∠B+∠D);(4)∠3+∠4﹣∠1﹣∠2不變正確.理由見(jiàn)解析
【解析】
(1)延長(zhǎng)BC到D,過(guò)點(diǎn)C作CE∥BA,根據(jù)兩直線平行,同位角相等可得∠B=∠1,兩直線平行,內(nèi)錯(cuò)角相等可得∠A=∠2,再根據(jù)平角的定義列式整理即可得證;
(2)根據(jù)三角形內(nèi)角和定理即可證明;
(3)根據(jù)(2)的結(jié)論∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解;
(4)作PQ∥AB,根據(jù)平行線性質(zhì)得到PQ∥CD,則∠APQ=180°﹣∠3﹣∠4,∠5=∠2,由于∠APQ+∠5+∠1=90°,則180°﹣∠3﹣∠4+∠2+∠1=90°,整理得到∠3+∠4﹣∠1﹣∠2=90°.
(1)證明:如圖1,延長(zhǎng)BC到D,過(guò)點(diǎn)C作CE∥BA,
∵BA∥CE,
∴∠B=∠1,
∠A=∠2,
又∵∠BCD=∠BCA+∠2+∠1=180°,
∴∠A+∠B+∠ACB=180°;
(2)證明:如圖2,在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(3)如圖3,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,
∠2+∠P=(180°﹣∠3)+∠D,
∴2∠P=180°+∠D+∠B,
∴∠P=90°+(∠B+∠D);
(4)②∠3+∠4﹣∠1﹣∠2不變正確.
理由如下:
作PQ∥AB,如圖4,
∵AB∥CD,
∴PQ∥CD,
由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,
由PQ∥CD得∠5=∠2,
∵∠APQ+∠5+∠1=90°,
∴180°﹣∠3﹣∠4+∠2+∠1=90°,
∴∠3+∠4﹣∠1﹣∠2=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形 的邊長(zhǎng) .某一時(shí)刻,動(dòng)點(diǎn) 從 點(diǎn)出發(fā)沿 方向以 的速度向 點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn) 從 點(diǎn)出發(fā)沿 方向以 的速度向 點(diǎn)勻速運(yùn)動(dòng),問(wèn):
(1)經(jīng)過(guò)多少時(shí)間, 的面積等于矩形 面積的 ?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與 相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點(diǎn)E,過(guò)點(diǎn)E作直線ED⊥AF,交AF的延長(zhǎng)線于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)C.
(1)求證:CD是⊙O的切線;
(2)若tanC= ,⊙O的半徑為2,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,設(shè)△ABC的面積為S,周長(zhǎng)為l.
(1)填表:
三邊a、b、c | ||
3、4、5 | 2 | |
5、12、13 | 4 | |
8、15、17 | 6 |
(2)如果,觀察上表猜想: (用含有m的代數(shù)式表示).
(3)證明(2)中的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2,0)同時(shí)出發(fā),沿長(zhǎng)方形BCDE的邊作環(huán)繞運(yùn)動(dòng).物體甲按逆時(shí)針?lè)较蛞?/span>1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?/span>2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2017次相遇地點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市開(kāi)展一項(xiàng)自行車(chē)旅游活動(dòng),線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問(wèn)沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC是等邊三角形,點(diǎn)D是線段AC上的一動(dòng)點(diǎn),E在BC的延長(zhǎng)線上,且BD=DE.
(1)如圖,若點(diǎn)D為線段AC的中點(diǎn),求證:AD=CE;
(2)如圖,若點(diǎn)D為線段AC上任意一點(diǎn),求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、OB相交于點(diǎn)C、D,問(wèn)PC與PD相等嗎?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù) 的圖像經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫(xiě)出該拋物線的對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo);
(3)點(diǎn)P(m , m)與點(diǎn)Q均在該函數(shù)圖像上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),求m的值及點(diǎn)Q 到x軸的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com